PHYS 206 Lecture 9
9.1) Angular Momentum
9.2) Cross product
9.3) Torque and moment of inertia
(*) Previously, we defined the "linear momentum" as

$$
\vec{p}=m \vec{v}
$$

This quantity represents how difficult it is to change an object's path:
v_{0} child running at you \rightarrow easy to $q \rightarrow$ (pushover (I assume).
皿 $\xrightarrow{v_{0}}$ (ar moving at you \rightarrow get out
*) Angular momentum is a similar concept, except for rotating objects:

How difficult is it to stop an object that is rotating?

* Two common types of angular momentum:
(1) Orbital: object rotating about a point.
\rightarrow Earth rotating around Sun
\rightarrow Swing object in circular path by a string
(2) Spin: solid object rotating about axis.
\rightarrow Spinning basketball
\rightarrow Rotating disk
(*) These two types of angular momentum are fairly intuitive, but there are several unintuitive aspects \rightarrow so be careful!

Unintuitive example:
θ

An object moving in a straight line some distance from the origin has angular momentum!

Example: Consider a rod that is free to rotate without friction about an axis perpendicular to its center. If you throw a rock at different points away from the axis, which will cause rod to rotate the fastest?

(overhead view)
rod

* Rock thrown from position (3) will cause
(1) (2) (3) rod to rotate fastest.
* Increasing $\frac{m}{}$ or v will also result in rod rotating faster.

Definition of angular momentum:

Larger distance from axis gives larger L.
9,2) Cross product

* Type of vector product that produces an output vector.
* The cross product of two vectors \vec{a} and \vec{b} has

Vector
"cross product" largest when \vec{r} and $\vec{\rho}$ are at 90°.
Larger linear momentum gives rise to larger L.

* Let's calculate $\vec{L}=\vec{r} \times \vec{p}$ for the rock example above at an arbitrary distance D from hitting the rod:

Always choose origin at rotation axis

$$
\begin{aligned}
& \sin \phi=h / r \\
& \stackrel{\rightharpoonup}{p}=m \vec{V} \\
& r=\sqrt{h^{2}+D^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\vec{L} & =\vec{r} \times \vec{p} \rightarrow L=r p \sin \theta \\
& \Rightarrow L=r \rho \sin (\pi-\phi) \\
L & =r p \sin \phi=r p(h / r) \\
L & =p h \quad \text { Constant along }
\end{aligned}
$$

 entire path!!

Direction of \vec{L} vector:
Pointing fingers toward \vec{r} and curling them toward \vec{p} would force your thumb to point out of page.

* Note that cross product direction also does not change as mass m moves upward.

Angular momentum of a freely moving object is constant (conserved)
9.3) Torque and moment of inertia

* Recall that forces cause acceleration

$$
\vec{F}=m \vec{a}
$$

or equivalently, forces causes changes in momentum $\vec{F}=m \frac{d \vec{v}}{d t}=\frac{d \vec{p}}{d t}$.
*) Analogously, "torques" cause angular acceleration, or equivalently torques cause a change in angular momentum:

$$
\vec{\tau}=\frac{d \vec{L}}{d t}
$$

* With this definition, we see that

$$
\begin{aligned}
& \frac{d \vec{L}}{d t}=\frac{d}{d t}(\vec{r} \times \vec{p})=\frac{d \vec{r}}{d t} \times \vec{p}+\vec{r} \times \frac{d \vec{p}}{d t} \\
&=\underbrace{\vec{v} \times \vec{p}}_{0}+\vec{r} \times \vec{F} \\
&=\vec{r} \times \vec{F} . \quad \text { Call this quantity } \\
& \text { "torque. }
\end{aligned}
$$

Definition
Torque: $\vec{\imath}=\vec{r} \times \vec{F} \quad \begin{aligned} & \vec{r} \\ & \text { origin from the }\end{aligned}$ origin to position where \vec{F} is applied.
Example: Consider the same force \vec{F} applied at two different points on a wheel
(a)
(b)

Due to the position \vec{r} at which \vec{F} is applied, in case (a) the wheel will start to rotate but in case (b) it will not

$$
\begin{array}{rlrl}
\vec{\tau}_{a} & =\vec{r}_{a} \times \vec{F} & \vec{\tau}_{b} & =\vec{r}_{b} \times \vec{F} \\
\vec{r}_{a} \vec{F} & \vec{r}_{a} & \longrightarrow \vec{F} \\
\vec{\tau}_{a} & =R F \sin 90^{\circ} & \vec{\tau}_{b} & =R F \sin 0 \\
& =R F \text { out of page } & & =0
\end{array}
$$

* Crucial point about both angular momentum and torque is that they depend sensitively on the location of the origin. (Many other vectors $\vec{v}, \vec{a}, \vec{\varphi}$, \vec{F}, etc. do not depend on origin.)
θ

Same object with same momentum.
$\theta_{1}: \vec{L}$ is nonzero and out of page \odot
$\theta_{2}: \vec{L}$ is zero
$\theta_{3}: \vec{L}$ is nonzero and into page \otimes
*) Angular analogue to $\vec{F}=m \vec{a}$:

$$
\begin{aligned}
& \vec{r} \times \vec{F}=\vec{r} \times(m \vec{a})=m\left(r \hat{\imath}_{r}\right) \times\left(a_{r} \hat{\iota}_{r}+a_{\theta} \hat{\imath}_{\theta}\right) \\
& \Rightarrow \vec{\tau}=m r\left(\alpha r+2 \omega \frac{d r}{d t}\right)\left[\hat{\imath}_{r} \times \hat{\imath}_{\theta}\right] \quad \hat{\iota}_{r} \times \hat{\iota}_{r}=0
\end{aligned}
$$

For purely angular motion $(d r / d t=0)$:

$$
\tau=m r^{2} \alpha \equiv I \alpha
$$

τ "Moment of inertia"
*) The moment of inertia represents how difficult it is to get an object to rotate. Large $I \Rightarrow$ difficult to rotate.

Example: Which of the two configurations of total mass $2\left(m_{1}+m_{2}\right)$ would be more difficult to rotate?
(a)

(b)

Hopefully your intuition says "(a)".

Example: Consider two blocks connected by a massless string and large pulley with radius R and moment of inertia I. If the ramp is frictionless and $m_{2} \gg m_{1}$, find the acceleration of m_{2} and the angular acceleration of the pulley.

Solution: The pulley will begin to rotate only if there is a net external torque.

* Key Point \rightarrow For a massive pulley, the tension in the string must be different
 on the two sides.

$$
T_{1} \neq T_{2}
$$

*) Since massive pulley rotates, we need an extra equation of motion:
(1) $m_{2} g-T_{2}=m_{2} a$
(2) $T_{1}-m_{1} g \sin \theta=m_{1} a$
(3)

$$
\begin{aligned}
& \Sigma \tau=I \alpha \Rightarrow R T_{2}-R T_{1}=I \alpha \\
& \quad \Rightarrow R T_{2}-R T_{1}=I \frac{a}{R}
\end{aligned}
$$

There are 3 equations and 3 unknowns $\left(T_{1}, T_{2}, a\right)$:

$$
\begin{aligned}
& T_{2}=m_{2}(g-a) \\
& T_{1}=m_{1}(g \sin \theta+a) \\
\Rightarrow & R\left(T_{2}-T_{1}\right)=I \frac{a}{R} \\
\Rightarrow & m_{2} g-m_{2} a-m_{1} g \sin \theta-m_{1} a=\frac{I}{R^{2}} a \\
\Rightarrow & \frac{m_{2} g-m_{1} g \sin \theta}{m_{1}+m_{2}+\frac{I}{R^{2}}}=a
\end{aligned}
$$

* The moment of inertia is also related to the angular momentum of a rigid body:

$$
L=I \omega \longleftarrow \text { Compare to } \stackrel{\phi}{\phi}=m \vec{V} \text {. }
$$

Example: Consider a solid rod of length L that is free to rotate about its center with moment of inertia I_{0}. If a bug with mass m crawls from the rotation axis to the edge of the rod according to $r(t)=\alpha t$, find the total moment of inertia as a function of time.

Solution:

$$
\begin{aligned}
I_{\text {total }} & =I_{0}+m r^{2} \\
I_{\text {total }} & =I_{0}+m(\alpha t)^{2} \\
& =I_{0}+m \alpha^{2} t^{2}
\end{aligned}
$$

If the rod rotates at a constant angular velocity ω_{0}, how does its angular momentum vary in time?

Answer: $L=I \omega$

$$
=\left(I_{0}+m \alpha^{2} t^{2}\right) \omega_{0}
$$

What about direction of \vec{L} ?

(overhead view)

$\vec{L}_{1} \odot \odot \vec{L}_{2}$
L is out of page when you look at any individual contribution to the total \vec{L}.

Rule for rigid body: Curl right hand fingers in direction of rotation, then thumb points in direction of \vec{L}.

