Det's calculate $\tilde{L} = \tilde{r} \times \tilde{p}$ for the rock example above at an arbitrary distance D from hitting the rod: rod JD Always choose origin at rotation axis $\frac{\partial h}{\partial r} = \frac{h}{r}$ $\frac{\partial h}{\partial r} = \frac{h}{r}$ $\frac{\partial h}{\partial r} = \frac{h}{r}$ $r = \sqrt{h^2 + D^2}$ $\vec{L} = \vec{r} \times \vec{p} \rightarrow L = rpsin\theta$ \implies L = rpsin (π - ϕ) $L = rpsin\phi = rp(h/r)$ (L = ph) Constant along entire path !!

Direction of L vector:

Pointing fingers toward 7 and curling them toward \$ would force your thumb to point out of page.

B Note that cross product <u>direction</u> also does not change as mass m moves upward.

Angular momentum of a freely moving object is constant (conserved)

9.3) Torque and moment of inertia (7)
(*) Recall that forces cause acceleration

$$\tilde{F} = m\tilde{a}$$

or equivalently, forces causes changes
in momentum $\tilde{F} = m\frac{d\tilde{v}}{dt} = \frac{d\tilde{p}}{dt}$.
(*) Analogously, "torques" cause angular
acceleration, or equivalently torques
cause a change in angular momentum
 $\tilde{T} = \frac{d\tilde{L}}{dt}$.

$$\vec{t}_{a} = \vec{r}_{a} \times \vec{F} \qquad \vec{t}_{b} = \vec{r}_{b} \times \vec{F}$$

$$\vec{r}_{a} \Rightarrow \vec{F} \qquad \vec{t}_{a} = \vec{r}_{b} \times \vec{F}$$

$$\vec{r}_{a} = RFsin 90^{\circ} \qquad \vec{t}_{b} = RFsin C$$

$$= RF \text{ out of page} = 0$$

(K) Crucial point about both angular momentum and torque is that they depend sensitively on the location of the origin. (Many other vectors $\vec{v}, \vec{a}, \vec{p}$, F, etc. do not depend on origin.)

 $\mathcal{O}_{1} : \tilde{L} \text{ is nonzero and out of page } O_{2} : \tilde{L} \text{ is zero} \\
 \mathcal{O}_{2} : \tilde{L} \text{ is zero} \\
 \mathcal{O}_{3} : \tilde{L} \text{ is nonzero and into page } \otimes$

ÛĎ Example: (onsider two blocks connected by a massless string and large pulley with radius R and moment of inertia I. If the ramp is frictionless and M, OT M2 m2 >> m1, find the acceleration of m₂ and the angular acceleration of the pulley.

Solution: The puller will begin to rotate only if there is a net external torque. & key Point -> For a massive pulley, the

M₂ M₂

tension in the string must be different on the two sides. \mathbf{T}_{1} \mathbf{T}_{2} \mathbf{T}_{2} \mathbf{T}_{2} \mathbf{T}_{2} \mathbf{T}_{2} \mathbf{T}_{2} \mathbf{M}_{2} \mathbf{M}_{2}

 $\mathbf{T}_{1} \neq \mathbf{T}_{2}$

& Since massive pulley rotates, we need an <u>extra</u> equation of motion:

(1) $M_2 g - T_2 = M_2 a <$ $\alpha = \overline{\rho}$ (2) $T_1 - m_1 gsin \Theta = m_1 a \leftarrow$ (3) $\Sigma \tau = I \alpha \Rightarrow R T_2 - R T_1 = I \alpha$

$$\Rightarrow R T_2 - R T_1 = I \frac{\alpha}{R}$$

There are 3 equations and 3 unknowns
$$(T_1, T_2, a)$$
:
 $T_2 = M_2(g-a)$
 $T_1 = M_1(gsin\theta + a)$
 $\Rightarrow R(T_2 - T_1) = I \frac{a}{R}$
 $\Rightarrow M_2g - M_2a - M_1gsin\theta - M_1a = \frac{I}{R^2}a$
 $\Rightarrow \frac{M_2g - M_1gsin\theta}{M_1 + M_2 + \frac{I}{R^2}} = a$

The moment of inertia is also related (13)
to the angular momentum of a rigid body:
$$L = I\omega$$
 (compare to $\dot{p} = m\dot{v}$.

Example: Consider a solid rod of length
L that is free to rotate about its center
with moment of inertia I. If a bug
with mass m crawls from the rotation
axis to the edge of the rod according to

$$r(t) = \alpha t$$
, find the total moment of inertia
as a function of time.

<u>Solution</u>: $I_{total} = I_o + mr^2$ $I_{total} = I_o + m(\alpha t)^2$ $= I_o + m\alpha^2 t^2$

If the rod rotates at a constant angular Velocity wo, how does its angular momentum vary in time?

<u>Answer</u>: $L = I\omega$ = $(I_0 + m\alpha^2 t^2)\omega_0$

what about direction of [?

Lis out of page when you look at any individual contribution to the total I.

Rule for rigid body: Curl right hand fingers in direction of rotation, then thumb points in direction of I.