
Pitts Lectures ①

8. 1) Intro to rotational motion

8.2) Polar coordinates

8.3) Velocity and acceleration in polar coordinates
8. 4) Using motion to find forces
-

Tj Introtorotationalmotiy
④ Until now we have not considered objects
that are rotating or revolving .

Examples :

-

- -
-
.

- a

i N
Earth rotating

- e

I

around Sun
Roller coaster Ball rolling down

incline

④ To analyze these motions , we need to introduce

many angulate counterparts to quantities we
have already discussed .



txampes : Angular velocity , angular acceleration,
②

torque (
"

angular force
" ) , moment of inertia

( " rotational mass
"

) , rotational kinetic energy ,

angular momentum .

④ The mathematical expression of physics laws

dealing with angular and rotational kinematics
is greatly simplified with

"polar coordinates
"

.

II8.jpolarcoord.no#
④ Although many of you have encountered polar
coordinates before (e.g. , defining a#tin in
Bolar co-ordinates) there are some tricky

aspects related to vectors inpolar
coordinates .

Easy : position in polar coordinates-
cartesian?÷, Polarities"aIt÷÷¥,



Relation between Cx ,t) and Cr
,
o) :

③

"#Multivalued ,

t.TT#tan-YY/x)-1 so be
careful .

iampe : Consider an object located at the
position x=-3 m , y = - 3m .

what is the positron
of the object in polar coordinates ?
-

tens
n Y rV¥yI = Tfzm)'t C- 3m)'

= 3rem
- → ×

② = * + tanh -- s•
or

4-
IT

-

Difficult : vectors in polar coordinates
-

④ Basis vectors defined by moving in
direction

of one coordinate , keeping all others fixed .

cartesian rt Eia. '
".es#f Basis vectors

"
"
•I!!Is i

×
more !



④
Question : what are the vectors below in spherical
coordinates ?

it:PE
£

Solution : At the location of E , the basis

vectors are to 9.
→ er .

Therefore, E = Fie .

Likewise at E Ff
ie

.

Therefore
, E = -E i r .

④ Interestingly ,
these are identical vectors ! ! !
-
-

Eze : what is the position vector in

polar coordinates ?

Wrong Ans : f f r tr t Oia- w

This doesn't have
units

of length .



To ⑤
-

••

Corrections : /E=r/ ¥4
"

How is this possible ? Position vector must

depend on both r and o , right ?

→ Yes ! That is because i r depends on 0 :
-

Ir = cos Q i
×
t sin Q i

y|io=-sinQi×tcosQ|
The basis vectors do not change with r , only with f :

⇐
I.•⇒ " eat to

:*
"

• •P
a s

⇒ F = r Ir = r cost is t r sin Q i y .

-
-

x y

-
-

-1¥::c: of ⇒ to:E¥I⇒7
- -



I velocit-yandaccderationinpd-arcoord.at
④ Question #I of Exam 3 is always the same :
-

Find T and a- in polar coordinates .

Solution : You can only take 3 things as given
1) F = r i r

2) Er = cost Ix t si n f I y
3) to = - sinQ i × t cos

Q t
y

The rest you must prove as follows .

Definition : J = did = dft ( r Tr)
a

key point is that both r and I can depend on time .

Need datCir) and soon also facto ) :

(a) dat Cir) = dat (cosOi × tsinoiy)

FtCir) = t¥i×+i
chain Rule !



dat Cir) = dd¥ C-Sinai, t cost it)
⑦

Need to prove on exam .

(b) dat Cio) = dal - sin 0 It cos Q iy)

dat ( to) = - cos0 Idf ex - sin O daff E,

←--d¥ Need to prove on exam .

⇒ i = It Cri r) = i r Ft t r dat

s=¥irtrdF
Then for acceleration we find :

a- = data = It[drat i r tr data to ]
= days i r t off off to + If HE ie t rdff.io
- -

+ r daff C- IF i r)



=iEEaEa¥⑧
How should we interpret these expressions for
J and I ?

J = off i r t r doff to
-
=

T t
"

radial velocity " "

tangential velocity
"

( how fast moving ( how fast moving
away from origin ) around the origin)

The quantity ) has a special name :

-

"

angular velocity
"

.

How fast object rotates .

④ Note that both radial and tangential velocities
are actual velocities (they have units F) ,
but angular velocity has different units : Is
or

revolutionShea .



⑨
Example : consider a solid wheel spinning at
a constant speed , where the origin is taken
to be the center .

Vo

¥¥.

④ The angular velocity w = daff is
constant . All points on the wheel
I complete 1 revolution in the
•

same amount of time .

④ The tangential velocity V = r daff = r w
-
- o

is larger farther from the center .

④ The radial velocity for every point
on the wheel is ur = DI = O .

dt

For acceleration we have 4 terms

a- = ( 9¥ - r (E) 2) It (r ditz +2¥ LE) if
-#Ieitrip etat
acceleration



④ The quantity diff, hasasp name :

" angular acceleration
"

- Note

that it is net a true acceleration but

instead has units revised .

→ It measures how the angular
velocity w -

- deaf is changing .

Ve

If w Ct) increases with time,

y
then a > o .

W Ct)

④ Centripetal acceleration as = - rater

will be especially important- - i

Exampled : we have introduced a
lot of new

terminology .
Let's consider how all of

these quantities behave for Earth
rotating around the Sun .



④
Earth rotates at a nearly constant
distance re = I so * 106 Km around the

sun once per year
. Find J

,
I
,
w
,
X

.

Solution : we know that r A) = 150×106
Km

and w Ct) = }÷ayT ,
both of which are

constant .

⇒ Jlt) = dft ir tr w to
= Oi rt (

1.5×108 km) ( 2÷sd⇒
Tf3Q000mlso
-

a- HI = - r w
') ir tyra t2¥I%
KEYES

= - ration = - 1.5×10
''m GIFTED

-

in

(unnoticeably small) .



①
④ Interestingly, the acceleration is always
radially inward :

This is true for all uniform (w = const .)

circular ( r = const .) motion .

But acceleration can point in other
directions for any nonuniform or non circular

motion .

4]Usingmotiontofindforo.es/Le-yConcept: If you know the motion of an

object r Ct) and w Ct) , you can find the
-
-

total force acting on the object .



This follows trivially from E = moi :
④

r Ct) and co Ct) = DI
- - dt

L t

off →¥. off
= E

e

a-HI - (dd÷ -±E) ir t Cr date +2¥ w) Io
=

- = =
-

Once you find £ , you can easily find

what must be the total force :
-

/Eta=ma]
Example : Exam 3 (2012) Q2

,
first part .

A flat circular curve , radius R , in the road

says
"Maximum speed Vma×

"

.
If a car travels

at Vmax without slipping , what must be the
coefficient of friction µ ?



④
Solution
④ Notice that we are given the

exact motion

of the object : g tangential velocity
rct ) = R and if = r dd¥ = Vmax

⇒ DI =VmaxdtR
Therefore , we should be able to find Ewa, -

④ But what physical forces produce Ftotai ?
→ Onto friction ! Think about it . . . if

the surface had no friction , could the car

make the turn ? No
,
it would just slide

forward .

⇒ total = fu =pN =p mg
④ This is very common : motion gives you Iota
but yous have to relate it to the

underlying physical forces .



④
Now we have

a- = rat) ir t ( r deaf!2f¥w) ie
Since rct) and colt) are constant , three

terms above vanish :

a- = - rat = - R ( 'mff)
'

But I = In F
g friction

- unify = In Lung )

⇒i=v;



Exampled : In an amusement park ride, people ④

stand with their backs against a circular wall
that begins to spin along with the platform on

which people stand .. If the ride has radius R and

the coefficient of friction between people and wall
isa, what angular velocity is needed so
that the riders won 't fall if the floor is
removed ?

Solution : Let's start by drawing a free-body
diagram

fu

iii.÷: noteI
④The only reason a rider doesn't fall off
is due to friction counteracting gravity .

Larger as → larger N → larger fu .



⑦
For uniform circular motion , we have

at = (DIL - rat) i r t (rdf¥t2¥d¥) to
= - Rai i r .

But I = ima ⇒ E- - mkafir .

Note that the centripetal force F = - mRafi .
is not a news forces .

Instead it must

result from some physical force . . .
in this

case it is the normal force N .

⇒ N = m Rw
'

The minimum value of us would lead person
to just start slipping :

sliding fu =µN =µmRw2
friction-



Friction must exactly balance gravity
⑧

⇒ fu = mg
⇒ µmRw2 =mg
⇒w=#

④ Note that this is independent of mass .
-

Just don't grease up your jacket before

getting on ride !



In general it is difficult to integrate ⑨
J ft) to obtain Ect) in polar coordinates
( likewise , solving Jlt) =fact) dt is difficult) .

This is because the basis vectors ingeneral
depend on time .

.

But there are two useful exceptions .

(a) Purely circular (constant
r Ct)

(b) Purely radial (constant Oct))
)

For (a) we can use

(1) act) = off ⇐ wCt) = fact) att t C

(2) was = doff ⇐ act) = fact) dit t C

(3) colt) = at t w
Q Lt) = Eat

' t wot too constant

art ,
}"" for

Co2 (t) = X .

④ Analogous to previous equations for
act) , v Ct) , X Ct)



For (b) we can use everything we've
⑤

learned in the case of ID motion
,

including

W = JECr ) . di = f Fcr) . [dri r trdo to]
-

wegot this from J = DII = off i r tr# ie
⇒ de = drier trdoio

For F Cr) = F Cr) i r , we find

W = f fCr) dr =DKE = -DU

④ Any purely radial force Fcr) Ir has an
associated potential energy function
Ucr ) = - SFG) dr


