PHYS 206 Lecture 8
8.1) Intro to rotational motion
8.2) Polar coordinates
8.3) Velocity and acceleration in polar coordinates
8.4) Using motion to find forces
8.1 Intro to rotational motion
(*) Until now we have not considered objects that are rotating or revolving.
Examples:

Earth rotating around Sun

Roller coaster

Ball rolling down incline
*) To analyze these motions, we need to introduce many angular counter parts to quantities we have already discussed.

Examples: Angular velocity, angular acceleration, torque ("angular force"), moment of inertia ("rotational mass"), rotational Kinetic energy, angular momentum.
(*) The mathematical expression of physics laws dealing with angular and rotational Kinematics is greatly simplified with "polar coordinates".
8.2 Polar coordinates
(*) Although many of you have encountered polar coordinates before (egg., defining a function in polar coordinates) there are some tricky aspects related to vectors in polar coordinates.

Easy: position in polar coordinates $\xrightarrow{\text { Cartesian } \prod_{x}}$

Position defined by r and θ.

Relation between (x, y) and (r, θ) :

$$
r=\sqrt{x^{2}+y^{2}}, \theta=\tan ^{-1}(y / x)^{2} \text { Multivalued, } \text { so be careful. }
$$

Example: Consider an object located at the position $x=-3 m, y=-3 m$. What is the position of the object in polar coordinates?

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& =\sqrt{(-3 m)^{2}+(-3 m)^{2}} \\
& \\
& =3 \sqrt{2} m \\
& \underline{\theta}=\pi+\tan ^{-1}(1)=\frac{5}{4} \pi
\end{aligned}
$$

Difficult: vectors in polar coordinates

* Basis vectors defined by moving in direction of one coordinate, Keeping all others fixed.

Question: What are the vectors below in spherical coordinates?

Solution: At the location of \vec{F}_{1}, the basis vectors are $\hat{i}_{\theta} \uparrow \hat{i}_{r}$. Therefore, $\vec{F}_{1}=F_{1} \hat{\imath}_{\theta}$.
L. Kewise at $\vec{F}_{2}{\overrightarrow{v_{i}}}^{i_{\theta}}$. Therefore, $\vec{F}_{2}=-F_{2} \hat{i}_{r}$.

* Interestingly, these are identical vectors!!!

Question: What is the position vector in polar coordinates?
Wrong Ans: $\vec{r} \neq r \hat{i}_{r}+\underbrace{\theta}$
This doesn't have units of length.

Correct Ans: $\vec{r}=r \hat{c}_{r}$

How is this possible? Position vector must depend on both r and θ, right?
\rightarrow Yes! That is because \hat{i}_{r} depends on θ :

$$
\begin{aligned}
& \hat{\imath}_{r}=\cos \theta \hat{\imath}_{x}+\sin \theta \hat{\imath}_{y} \\
& \hat{\imath}_{\theta}=-\sin \theta \hat{i}_{x}+\cos \theta \hat{\imath}_{y}
\end{aligned}
$$

The basis vectors do not change with r, only with θ :

$$
\begin{aligned}
& \Rightarrow \vec{r}=r \hat{\imath}_{r}=\underbrace{r \cos \theta}_{x} \hat{\imath}_{x}+\underbrace{r \sin \theta}_{y} \hat{\iota}_{y} . \\
& \begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array} \Longleftrightarrow \quad r=\sqrt{x^{2}+y^{2}} \\
& y=r \sin \theta \Longleftrightarrow \theta=\tan ^{-1}(y / x)
\end{aligned}
$$

8.3 Velocity and acceleration in polar coordinates

* Question \#1 of Exam 3 is always the same:

Find \vec{v} and \bar{a} in polar coordinates.
Solution: You can only take 3 things as given

1) $\vec{r}=r \hat{\iota}_{r}$
2) $\hat{i}_{r}=\cos \theta \hat{i}_{x}+\sin \theta i_{y}$
3) $\hat{i}_{\theta}=-\sin \theta i_{x}+\cos \theta i_{y}$

The rest you must prove as follows.
Definition: $\vec{v}=\frac{d \vec{r}}{d t}=\frac{d}{d t}\left(r \hat{i}_{r}\right)$
Key point is that both r and \hat{i}_{r} can depend on time. Need $\frac{d}{d t}\left(\tilde{\imath}_{r}\right)$ and soon also $\frac{d}{d t}\left(\tilde{r}_{\theta}\right)$:

$$
\begin{aligned}
\text { (a) } \frac{d}{d t}\left(\hat{\imath}_{r}\right) & =\frac{d}{d t}\left(\cos \theta \hat{\imath}_{x}+\sin \theta \hat{\imath}_{y}\right) \\
\frac{d}{d t}\left(\hat{\imath}_{r}\right) & =-\sin \theta \frac{d \theta}{d t} \hat{i}_{x}+\cos \theta \frac{d \theta}{d t} \hat{\imath}_{y}
\end{aligned} \text { chain Rule! }
$$

$$
\begin{aligned}
& \frac{d}{d t}\left(\hat{\imath}_{r}\right)=\frac{d \theta}{d t}\left(-\sin \theta \hat{i}_{x}+\cos \theta \hat{\imath}_{y}\right) \\
& \frac{d}{d t}\left(\hat{i}_{r}\right)=\frac{d \theta}{d t} \hat{\imath}_{\theta} \quad \text { Need to prove on exam. }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{d}{d t}\left(\hat{\imath}_{\theta}\right)=\frac{d}{d t}\left(-\sin \theta \hat{i}_{x}+\cos \theta \hat{i}_{y}\right) \\
& \frac{d}{d t}\left(\hat{\imath}_{\theta}\right)=-\cos \theta \frac{d \theta}{d t} \hat{i}_{x}-\sin \theta \frac{d \theta}{d t} \hat{\imath}_{y}
\end{aligned}
$$

$\frac{d}{d t}\left(\hat{\imath}_{\theta}\right)=-\frac{d \theta}{d t} \hat{c}_{r}$ Need to prove on exam.

$$
\begin{aligned}
\Rightarrow \vec{v} & =\frac{d}{d t}\left(r \hat{i}_{r}\right)=\hat{\imath}_{r} \frac{d r}{d t}+r \frac{d \hat{\iota}_{r}}{d t} \\
\vec{v} & =\frac{d r}{d t} \hat{u}_{r}+r \frac{d \theta}{d t} \hat{u}_{\theta}
\end{aligned}
$$

Then for acceleration we find:

$$
\begin{aligned}
& \vec{a}=\frac{d \vec{v}}{d t}=\frac{d}{d t}\left[\frac{d r}{d t} \hat{c}_{r}+r \frac{d \theta}{d t} \hat{c}_{\theta}\right] \\
& =\frac{d^{2} r}{d t^{2}} \hat{\imath}_{r}+\frac{\frac{d r}{d t} \frac{d \theta}{d t} \hat{\imath}_{\theta}+\frac{d r}{d t} \frac{d \theta}{d t} \hat{c}_{\theta}+r \frac{d^{2} \theta}{d t^{2}} \hat{\imath}_{\theta}}{}+\quad+\frac{d \theta}{d t}\left(-\frac{d \theta}{d t} \hat{i}_{r}\right)
\end{aligned}
$$

$$
=\left(\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}\right) \hat{\iota}_{r}+\left(r \frac{d^{2} \theta}{d t^{2}}+2 \frac{d r}{d t} \frac{d \theta}{d t}\right) \hat{c}_{\theta}
$$

How should we interpret these expressions for \vec{v} and \vec{a} ?

$$
\begin{aligned}
& \vec{v}=\frac{\frac{d r}{d t}}{\jmath} \hat{\imath}_{r}+r \frac{d \theta}{d t} \hat{\imath}_{\theta} \\
& \text { "radial velocity" "tangential velocity" } \\
& \text { (how fast moving }
\end{aligned}
$$

(how fast moving away from origin)
(how fast moving around the origin)
The quantity $\frac{d \theta}{d t} \equiv \omega$ has a special name: "angular velocity". How fast object rotates.
(*)Note that both radial and tangential velocities are actual velocities (they have units $\frac{m}{s}$), but angular velocity has different units: $\frac{1}{s}$ or revolutions $/ \mathrm{sec}$.

Example: Consider a solid wheel spinning at a constant speed, where the origin is taken to be the center.

ω
(*) The angular velocity $\omega=\frac{d \theta}{d t}$ is constant. All points on the wheel complete 1 revolution in the same amount of time.
(*) The tangential velocity $V_{\theta}=r \frac{d \theta}{d t}=r \omega$ is larger farther from the center.
*) The radial velocity for every point on the wheel is $v_{r}=\frac{d r}{d t}=0$.

For acceleration we have 4 terms

$$
\vec{a}=\left(\frac{d^{2} r}{d t^{2}}-\frac{r\left(\frac{d \theta}{d t}\right)^{2}}{\text { l }_{\text {centripetal }}}\right) \hat{u}_{r}+\left(r \frac{d^{2} \theta}{d t^{2}}+2 \frac{d r}{d t} \frac{d \theta}{d t}\right) \hat{c}_{\theta}
$$

* The quantity $\frac{d^{2} \theta}{d t^{2}}$ has a special name: "angular acceleration" $\alpha \equiv \frac{d^{2} \theta}{d t^{2}}$. Note that it is not a true acceleration but instead has units rev/ sec ${ }^{2}$.
\rightarrow It measures how the angular velocity $\omega=\frac{d \theta}{d t}$ is changing.

If $\omega(t)$ increase es with time, then $\alpha>0$.

* Centripetal acceleration $\vec{a}_{c}=-r \omega^{2} \hat{\imath}_{r}$ will be especially important.

Example: We have introduced a lot of new terminology. Let's consider how all of these quantities behave for Earth rotating around the Sun.

Earth rotates at a nearly constant distance $r_{E}=150 \times 10^{6} \mathrm{Km}$ around the sun once per year. Find $\vec{v}, \vec{a}, \omega, \alpha$.
Solution: We know that $r(t)=150 \times 10^{6} \mathrm{~km}$ and $\omega(t)=\frac{2 \pi}{365 \text { days }}$, both of which are constant.

$$
\begin{aligned}
\Rightarrow \vec{v}(t) & =\frac{d r}{d t} \hat{\iota}_{r}+r \omega \hat{\iota}_{\theta} \\
& =0 \hat{\iota}_{r}+\left(1.5 \times 10^{8} \mathrm{~km}\right)\left(\frac{2 \pi}{365 \text { days }}\right) \\
& \approx 30,000 \mathrm{~m} / \mathrm{s} \hat{\iota}_{\theta}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{a}(t)=\left(\frac{d^{2} r}{d t^{2}}-r \omega^{2}\right) \hat{\imath}_{r}+\left(r / \alpha+2 \omega^{\prime} \frac{d r}{d t}\right)^{0} \hat{\imath}_{\theta} \\
& 0 \\
&=\frac{d \omega}{d t}=0 \\
&=-r \omega^{2} \hat{\iota}_{r}=-1.5 \times 10^{\prime \prime} \mathrm{m}\left(\frac{2 \pi}{365 d a y \delta}\right)^{2} \hat{\imath}_{r} \\
&=-0.006 \mathrm{~m} / \mathrm{s}^{2} \hat{\imath}_{r} \quad \text { (unnoticeably small). }
\end{aligned}
$$

*) Interestingly, the acceleration is always radially inward:

This is true for all uniform ($\omega=$ const.) circular ($r=$ const.) motion.

But acceleration can point in other directions for any nonuniform or noncircular motion.
8.4 Using motion to find forces

Key Concept: If you know the motion of an object $r(t)$ and $\omega(t)$, you can find the total force acting on the object.

This follows trivially from $\vec{F}=m \vec{a}$:

$$
\begin{gathered}
\frac{r(t)}{L} \text { and } \frac{\omega(t)}{\downarrow}=\frac{d \theta}{d t} \\
\frac{d r}{\underline{d t}} \rightarrow \frac{d^{2} r}{\underline{d t^{2}}} \stackrel{\frac{d \omega}{d t}}{\underline{~}} \\
\vec{a}(t)=\left(\frac{d^{2} r}{d t^{2}}-r \omega^{2}\right) \hat{c}_{r}+\left(r \frac{d \omega}{d t}+2 \frac{d r}{d t} \omega\right) \hat{\iota}_{\theta}
\end{gathered}
$$

Once you find \vec{a}, you can easily find what must be the total force:

$$
\vec{F}_{\text {total }}=m \vec{a}
$$

Example: Exam 3 (2012) Q2, first part. A flat circular curve, radius R, in the road says "Maximum speed $V_{\max }$ ". If a car travels at $V_{\max }$ without slipping, what must be the coefficient of friction μ ?

Solution
*) Notice that we are given the exact motion of the object:
tangential velocity

$$
\begin{aligned}
& r(t)=R \text { and } V_{t}=r \frac{d \theta}{d t}=V_{\max } \\
& \Rightarrow \frac{d \theta}{d t}=\frac{V_{\max }}{R}
\end{aligned}
$$

Therefore, we should be able to find $\vec{F}_{\text {total }}$.

* But what physical forces produce $\vec{F}_{\text {total }}$?
\rightarrow Only friction! Think about it.... if the surface had no friction, could the car make the turn? No, it would just slide forward.

$$
\Rightarrow F_{\text {total }}=f_{\mu}=\mu N=\mu m g
$$

* This is very common: motion gives you $\vec{F}_{\text {to }}$ but you have to relate it to the underlying physical forces.

Now we have

$$
\begin{aligned}
& \text { How we have } \\
& \vec{a}=\left(\frac{d^{2} g}{d t^{2}}-r \omega^{2}\right) \hat{\imath}_{r}+\left(r \frac{d \varphi}{d t}+2 \frac{d r}{d t} \omega\right) \hat{\imath}_{\theta}
\end{aligned}
$$

Since $r(t)$ and $\omega(t)$ are constant, three terms above vanish:

$$
\vec{a}=-r \omega^{2}=-R\left(\frac{V_{\max }}{R}\right)^{2}
$$

But $\vec{a}=\frac{1}{m} \vec{F}$

$$
\begin{aligned}
& \text { But } \vec{a}=\frac{1}{m} F \\
& -\frac{v_{\max }^{2}}{R}=-\frac{1}{m}(\mu m g) \\
& \Rightarrow \mu=\frac{v_{\max }^{2}}{g R}
\end{aligned}
$$

Example: In an amusement park ride, people stand with their backs against a circular wall that begins to spin along with the platform on which people stand. If the ride has radius R and the coefficient of friction between people and wall is μ, what angular velocity is needed so that the riders won't fall if the floor is removed?

Solution: Let's start by drawing a free-bodr diagram

(*) The only reason a rider doesn't fall off is due to friction counteracting gravity. Larger $\omega \rightarrow$ larger $N \rightarrow$ larger f_{μ}.

For uniform circular motion, we have

$$
\begin{aligned}
\vec{a} & =\left(\frac{d^{2} \phi}{d t^{2}}-r \omega^{2}\right) \hat{\imath}_{r}+\left(r \frac{d \varphi}{k_{0}}+2 \frac{d r}{d t} \frac{d \omega}{d t}\right) \hat{\imath}_{\theta} \\
& =-R \omega_{0}^{2} \hat{\imath}_{r} .
\end{aligned}
$$

But $\vec{F}=m \vec{a} \Rightarrow \vec{F}=-m R \omega^{2} \hat{\imath}_{r}$.
Note that the centripetal force $\vec{F}=-m R \omega^{2} \hat{\imath}_{r}$ is not a new force. Instead it must result from some physical force... in this case it is the normal force N.

$$
\Rightarrow N=m R w^{2}
$$

The minimum value of we would lead person to just start slipping:

$$
\text { sliding } \text { friction }_{f_{\mu}=\mu N}=\mu m R \omega^{2}
$$

Friction must exactly balance gravity

$$
\begin{aligned}
& \Rightarrow f_{\mu}=m g \\
& \Rightarrow \mu m R \omega^{2}=m g \\
& \quad \Rightarrow \omega=\sqrt{\frac{g}{\mu R}}
\end{aligned}
$$

* Note that this is independent of mass.

Just don't grease up your jacket before getting on ride!

In general it is difficult to integrate
$\vec{V}(t)$ to obtain $\dot{r}(t)$ in polar coordinates
(likewise, solving $\vec{V}(t)=\int a(t) d t$ is difficult).
This is because the basis vectors in general depend on time.
But there are two useful exceptions:
(a) Purely circular (Constant $r(t)$)
(b) Purely radial (constant $\theta(t)$)

For (a) we can use
(1) $\alpha(t)=\frac{d \omega}{d t} \Leftrightarrow \omega(t)=\int \alpha(t) d t+C$
(2) $\omega(t)=\frac{d \theta}{d t} \Leftrightarrow \theta(t)=\int \omega(t) d t+C$
(3)

$$
\left.\begin{array}{l}
\omega(t)=\alpha t+\omega_{0} \\
\theta(t)=\frac{1}{2} \alpha t^{2}+\omega_{0} t+\theta_{0} \\
\omega^{2}(t)=\omega_{0}^{2}+2 \alpha \theta
\end{array}\right\} \begin{aligned}
& \text { Only for } \\
& \text { constant } \\
& \alpha .
\end{aligned}
$$

* Analogous to previous equations for $a(t), v(t), x(t)$

For (b) we can use everything we've learned in the case of ID motion, including

$$
W=\int \vec{F}(r) \cdot d \vec{r}=\int \vec{F}(r) \cdot\left[d r \hat{\iota}_{r}+r d \theta \hat{\iota}_{\theta}\right]
$$

We got this from $\vec{v}=\frac{d \vec{r}}{d t}=\frac{d r}{d t} \hat{c}_{r}+r \frac{d \theta}{d t} \hat{c}_{\theta}$

$$
\Rightarrow d \vec{r}=d r \hat{\iota}_{r}+r d \theta \hat{c}_{\theta}
$$

For $\vec{F}(r)=F(r) \hat{\imath}_{r}$, we find

$$
W=\int F(r) d r=\Delta K E=-\Delta U
$$

*) Any purely radial force $F(r) \hat{u}_{r}$ has an associated potential energy function

$$
U(r)=-\int F(r) d r
$$

