PHYS 206 Lecture 12

12.1) Reference frames with constant velocity 12.2) Accelerating reference frames 12.3) Fictional forces

Example: Suppose you are sitting on a train
which travels at a constant velocity
$$\vec{v} = v_0 \hat{v}_X$$
.
At time $t = 0$ you pass person A outside.
Define two coordinate systems: O is centered
on person A and O' is centered on you in
the train:

(a) Your position is given by:

$$0: \hat{a} = 0, \quad \vec{v} = v_0 \quad \vec{v}_x, \quad \vec{x} = v_0 \quad \vec{v}_x$$

 $0': \quad \vec{a}' = 0, \quad \vec{v}' = 0, \quad \vec{x}' = 0$

(b) Throw an apple at horizontal speed Va to
your friend on opposite end of train car.
Apple's trajectory is given by:
$$O: \dot{a} = -g\hat{c}_{\gamma}, \quad x = (V_0 + V_a)t, \quad y = -\frac{1}{2}gt^2$$

 $O': \dot{a}' = -g\hat{c}_{\gamma}, \quad x' = V_at, \quad y' = -\frac{1}{2}gt^2$

(4)
(4)
(4)
(4)
(4)
(4)
(4)
(5)
(5)
(4)
(5)
(5)
(4)
(5)
(5)
(4)
(5)
(4)
(5)
(4)
(5)
(4)
(4)
(5)
(4)
(4)
(5)
(4)
(4)
(5)
(4)
(4)
(5)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)

In the previous train example, it would 'feel' to you that some mystery force F_m is is pushing you against your seat: $F_{total} = N - F_m = O$ $F_m \longleftrightarrow N$ But $N = m\alpha$ (from above) $\Rightarrow F_m = -m\alpha \hat{\iota}_X$

Determination is <u>opposite</u> to the direction of acceleration. This is a <u>general</u> <u>feature</u> of fictitious forces in accelerating reference frames.

In reality, there must be a centripetal force

$$\vec{F}_c = -M\omega^2 \hat{\iota}_r = -M\left(\frac{V_o}{R}\right)^2 \hat{\iota}_r$$
 pointing
inward toward the center of circle. This
is produced by the physical tension force
 $\vec{F}_c = -M\omega^2 \hat{\iota}_r = -M\left(\frac{V_o}{R}\right)^2$
 $\vec{F}_c = -M\left(\frac{V_o}{R}\right)^2$
 \vec{F}_c

x)
$$T_{SNO} = m\left(\frac{V_{O}}{R}\right)^{2}$$

y) $T_{cosO} = mg$
Divide equations: $\tan \Theta = \frac{V_{O}^{2}}{gR^{2}}$
Sum squares of both equations:
 $T^{2}sm^{2}\Theta + T^{2}cos\Theta = m^{2}\left(\frac{V_{O}}{R}\right)^{4} + m^{2}g^{2}$
 $\Rightarrow T = m\sqrt{\left(\frac{V_{O}}{R}\right)^{4} + g^{2}}$

6

In your reference frame, the fictitious force to the right is called the "centrifugal force".

12.3) Fictional forces

General derivation: (1) Define roas the location of the O' (accelerating) origin in the O frame.

(2) The position of some object is F in the O frame and F' in the O' frame.

(*) Fictional forces always act opposite to true acceleration of O' in O "inertial frame".

Case 1] Suppose O'system rotates with
constant angular velocity
$$\omega$$
 at distance d
from origin O. Then
 $F_r - (-m d \omega^2) = ma_r$,
 $\Rightarrow F_r + m d \omega^2 = ma_r$,
Centrifugal force radially outward
Case 2] Suppose O'system rotates with
constant angular velocity ω and has constant
radial velocity $v_r = \frac{dr_o}{dt}$. Then
 $F_r + mr_o \omega^2 = ma_r$,
 $F_{\Theta} - m(r_o \alpha + 2\omega \frac{dr_o}{dt}) = ma_{\theta}$,
 $\Rightarrow F_{\Theta} - 2m\omega v_r = ma_{\theta}$,
 $f_{\Theta} - m(r_o \alpha + 2\omega \frac{dr_o}{dt}) = ma_{\theta}$,
 $f_{\Theta} - m(r_o \alpha + 2\omega \frac{dr_o}{dt}) = ma_{\theta}$,
 $f_{\Theta} - m(r_o \alpha + 2\omega \frac{dr_o}{dt}) = ma_{\theta}$,
 $f_{\Theta} - m(r_o \alpha + 2\omega \frac{dr_o}{dt}) = ma_{\theta}$,
 $f_{\Theta} - 2m\omega v_r = ma_{\Theta}$,
 f_{Θ}

Example: Hurricanes in the northern hemisphere rotate counterclockwise, and those in the southern hemisphere rotate clockwise. $\rightarrow \bigcirc \longleftarrow \uparrow$ Eye of hurricane is a low-pressure area that sucks air in. In northern hemisphere, top air actually flows radially outward Equator air Contolis force $-2mWV_{r} < 0$ ($V_{r} > 0$) (top view) F_{0} (control is force F_{0} ($V_{r} > 0$) For Coriolis force -2mwvr>0 (vr<0)

Result is counterclockwise rotation

