PHYS 206 Lecture 12
12.1) Reference frames with constant velocity
12.2) Accelerating reference frames
12.3) Fictional forces
12.1) Reference frames with constant velocity
(*) Until now we have been able to choose the location of the origin and orientation of the x, y, z axes, but we have always implicitly assumed they were stationary.

* Once the origin is chosen, all vectors $\{\vec{r}, \vec{v}, \vec{a}, \vec{F}, \vec{L}, \vec{\tau}, \ldots\}$ can be defined and physical laws relating them can be derived $\left\{\vec{F}=m \vec{a}, \vec{L}=\vec{r} \times \vec{p}, \vec{\tau}=\frac{d \vec{L}}{d t}, \ldots\right\}$.
* You might ask yourself: "What if I had chosen a moving origin or coordinate system? Would the fundamental laws of physics have to be modified?"
(i) Coordinate system moving with constant velocity \longrightarrow Laws of physics unchanged
(ii) Accelerating coordinate system
\longrightarrow Laws of physics change
Example: Suppose you are sitting on a train which travels at a constant velocity $\vec{V}=V_{0} \hat{\imath}_{x}$. At time $t=0$ you pass person A outside. Define two coordinate systems: θ is centered on person A and θ^{\prime} is centered on you in the train:
(a) Your position is given by:

$$
\begin{aligned}
& \theta: \vec{a}=0, \vec{v}=v_{0} \hat{v}_{x}, \vec{x}=v_{0} t \hat{\imath}_{x} \\
& \theta^{\prime}: \vec{a}^{\prime}=0, \vec{v}^{\prime}=0, \vec{x}^{\prime}=0
\end{aligned}
$$

(b) Throw an apple at horizontal speed v_{a} to your friend on opposite end of train car. Apple's trajectory is given by:

$$
\begin{aligned}
& \theta: \vec{a}=-g \hat{v}_{y}, x=\left(v_{0}+v_{a}\right) t, y=-\frac{1}{2} g t^{2} \\
& \theta^{\prime}: \vec{a}^{\prime}=-g \hat{v}_{y}, x^{\prime}=v_{a} t, y^{\prime}=-\frac{1}{2} g t^{2}
\end{aligned}
$$

*) In both reference frames, the normal laws of physics can be applied. In particular, we used:

$$
\begin{aligned}
& F_{x}=m a_{x}=0 \Rightarrow a_{x}=0 \text { and } \\
& F_{y}=m a_{y}=-m g \Rightarrow a_{y}=-g .
\end{aligned}
$$

* Constant velocity reference frames introduce no important complications.
12.2) Accelerating reference frames

Example: Now suppose that the train starts from rest and has acceleration $a_{x}=\alpha$. Your trajectory in the two frames is:
$\theta: a_{x}=\alpha, v=\alpha t, x=\frac{1}{2} \alpha t^{2}$
$\theta^{\prime}: a_{x}^{\prime}=0, v^{\prime}=0, x^{\prime}=0$

* In θ we see that Newton's Ind law holds:

*) In θ^{\prime} there is the same normal force N, but you don't accelerate $\square \rightarrow N$
$\vec{F}=m \vec{a}$ is no longer valid!
* In an accelerating frame, you must introduce fictional forces in order to apply Newton's ind Law.

In the previous train example, it would "feel" to you that some mystery force F_{m} is is pushing you against your seat:

$$
\begin{aligned}
F_{\text {total }} & =N-F_{m}=0 \\
\text { But } N & =m \alpha \text { (from above) } \\
& \Rightarrow \vec{F}_{m}=-m \alpha \hat{l}_{x}
\end{aligned}
$$

* Note that \vec{F}_{m} is opposite to the direction of acceleration. This is a general feature of fictitious forces in accelerating reference frames.

Example: Suppose you hang a ball of mass m from the ceiling of your train that travels at constant speed v_{0} around a circular track of radius R. What will be the tension in the string and at what angle will it hang?

In your reference frame, it appears there is a mysterious force pushing ball to right.

In reality, there must be a centripetal force $\vec{F}_{c}=-m \omega^{2} \hat{\iota}_{r}=-m\left(\frac{V_{0}}{R}\right)^{2} \hat{\imath}_{r}$ pointing
inward toward the center of circle. This is produced by the physical tension force

x) $T \sin \theta=m a=m\left(\frac{V_{0}}{R}\right)^{2}$
y) $T \cos \theta-m g=0$

$$
\Rightarrow T \cos \theta=m g
$$

x) $T \sin \theta=m\left(\frac{V_{0}}{R}\right)^{2}$
y) $T \cos \theta=m g$

Divide equations: $\tan \theta=\frac{V_{0}^{2}}{g R^{2}}$
Sum squares of both equations:

$$
\begin{aligned}
& T^{2} \sin ^{2} \theta+T^{2} \cos ^{2} \theta=m^{2}\left(\frac{V_{0}}{R}\right)^{4}+m^{2} g^{2} \\
& \Rightarrow T=m \sqrt{\left(\frac{V_{0}}{R}\right)^{4}+g^{2}}
\end{aligned}
$$

In your reference frame, the fictitious force to the right is called the "centrifugal force".
12.3) Fictional forces

General derivation:
(1) Define \vec{r}_{0} as the location of the θ^{\prime} (accelerating) origin in the θ frame.
(2) The position of some object is \vec{r} in the θ frame and \vec{r}^{\prime} in the θ^{\prime} frame.
(3) Then

$$
\begin{aligned}
& \vec{r}=\vec{r}_{0}+\vec{r}^{\prime} \\
& \frac{d \vec{r}}{d t}=\frac{d \vec{r}_{0}}{d t}+\frac{d \vec{r}^{\prime}}{d t} \\
& \frac{d^{2} \vec{r}}{d t^{2}}=\frac{d^{2} \vec{r}_{0}}{d t^{2}}+\frac{d^{2} \vec{r}^{\prime}}{d t^{2}} \\
& \vec{a}=\frac{d^{2} \vec{r}_{0}}{d t^{2}}+\vec{a}^{\prime} \\
& \frac{\vec{F}}{m}=\frac{d^{2} \vec{r}_{0}}{d t^{2}}+\vec{a}^{\prime}
\end{aligned}
$$

$$
\Rightarrow \vec{F}^{\vec{F}}-m \frac{d^{2} \vec{r}_{o}}{d t^{2}}=m \vec{a}^{\prime}
$$

Real forces Fictional forces
Acceleration in moving frame.
(*) Fictional forces always act opposite to true acceleration of θ^{\prime} in θ "inertial frame".

Case 1 Suppose θ^{\prime} system rotates with constant angular velocity ω at distance d from origin θ. Then

$$
\begin{aligned}
& F_{r}-\left(-m d \omega^{2}\right)=m a_{r^{\prime}} \\
\Rightarrow & F_{r}+m d \omega^{2}=m a_{r^{\prime}} \\
& \quad C_{\text {Centrifugal force radially outward }}
\end{aligned}
$$

Case 2$]$ Suppose θ^{\prime} system rotates with constant angular velocity ω and has constant radial velocity $v_{r}=\frac{d r_{0}}{d t}$. Then

$$
\begin{aligned}
& F_{r}+m r_{0} \omega^{2}=m a_{r^{\prime}} \\
& F_{\theta}-m(\underbrace{r_{0} \alpha}_{0}+2 \omega \frac{d r_{0}}{d t})=m a_{\theta^{\prime}} \\
& \Rightarrow F_{\theta}-2 m \omega v_{r}=m a_{\theta^{\prime}}
\end{aligned}
$$

\uparrow "Coriolis force" acts tangentially.

Example: Hurricanes in the northern hemisphere rotate counterclockwise, and those in the southern hemisphere rotate clockwise.

Eye of hurricane is a low-pressure area that sucks air in.

In northern hemisphere, top air actually flows radially outward

Result is counterclockwise rotation

