
PHYS 206 Lecture ll
①

11 . 1) Oscillating systems
II.2) Differential equation for oscillations
1h 3) Applications

11 . l) oscillating systems
④ Many objects in the real world undergo
oscillatory motion

.

→ Pull on a tree branch
,
and it will return to

its original position after undergoing a
few oscillations .

→ Drop a rock in a lake and the water waves
will oscillate in time .

→ Springs
→ pendulum

④ Oscillating systems are common because
systems are often at the minimum of

potential energy and once disturbed they
want to return to that minimum

.



F- Cx . ) =
- old > o

②
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UCx) DX

⇒ FCK) is to the right
• • Fcxz) =

- dd e O
• DX

i i i > X ⇒ Fcxz) is to the left
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f =

- dad, = o (equilibrium)

II.2) Differential equation for oscillations
④ Taylor series expansion of the potential

energy function about its minimum value :

U(x) = U(Xo) t U' (Xo) (x -Xo) t E U
" (Xo) (x- xo)' t - - -

= 0 since Xo is at minimum

= U (xo) t E U" (Xo) (x- xo)' t - - -

⇒ F Cx) ⇒ -¥ = -- U
"(xo) (x - xD t . - -

Normally convenient to define origin to be at

Xo ( like we did with springs) :

F- Cx) = - K x t . . . ( where K - U
" (xD > o)



④ Fundamental equation for oscillations :
③

F- = - Kx

This is a

(1) linear ( proportional to x)
(2) restoring ( opposite to displacement)

type of force .

④ From Newton's 2nd Law :

E -- ma

- Kx = m DI ( d .

I
dtz

' fferential equation)

position depends
[ 2nd derivative of

on time : x Ct) x Ct)

⇒ DIX
=
- K x Ct)

dt2 m

④ what function xCt) has a second derivative

proportional to - itself ? ?



Answer : Some combination of sin and cos .

④

Let x G) = A sin (wt) t B cos (wt) .

Then daff = Aw cos Caot) - Bws in Cw t)
and daffy = - aft sin(wt) - w' B cos Cart)

= - w
' [ A sin (wt) tB cos(wt)]

=
- w
' [x Ct)]

In order for Newton's 2nd Law to be satisfied

w -- VE .

General solution :

xA) = AsinCRE t) t B cosGRE t)

A and B are undetermined constants that

are fixed by the initial conditions

of the system .



⑤
II. 3) Applications

④ Simplest application is to springs ,
for

which F-Cx) = - Kx i
×

.

Example : A block of mass m is connected
to a spring with spring constant K that is

compressed a distance d and released
from rest .

what is the resulting position
of the block as a function of time ?

Solution :

F = -- K* = ma = wedie
dt2

⇒ d¥d. = f- E) x
⇒ General solution is

x# = AsinCRE t) t B cosGRE t)
④ Note that the initial conditions are

( i )
"compressed a distance d

' '
⇒ x co) = ⇒ d

Cii) " released from rest " ⇒ v (o) = O



Plugging in we find ⑥

Xco) = - d

Asinhfio)tBcos(fE)= -d
B. =-D

Since xH=Asin(fEt)tBcos(that) ,
vet) - Afknicoscfkat) - Bffisinhfat )

Therefore , Vco) = O

⇒ Afahcosffho) - Bffisinhfho) -- o

⇒ AFI - o ⇒ A- o

⇒ x# = - dcosffh't)

i÷÷÷±
'Ii:÷÷÷÷

"



From XCt) we can of course calculate
⑦

also v Ct) and act) :

vets = DIET sin (FET) , etc .

④ There are lots of different variations

depending on the initial conditions ..

Example : Block me at rest on spring . An

incoming block m ,
with speed v , collides and

sticks to m2 . what is the motion after
collision ? Neglect any friction .

Solution : M2
v
,
Mi

Momentum conservation Cleeeea a X
r D
⑤

gives
- M

,
V
,
= (Mit Mz) v

⇒ v (o) = -
m,M+'m, Vo ( initial condition D

X 07=0 ( initial condition 2)



Now Newton's 2nd Law gives
⑧

F- = mai ⇒ - Kx = Cm , tmz) dd¥z
⇒ Iffy = tufts) ×

Samegeneral solution as before
xG) = A sin (TEI t) tBcosffhit) m -mitmz

But now xco) = o ⇒ 13=0

And v (o) = - Mi
Mi t ma

Y

⇒ ARE = IF 'm
,
Y

⇒ A- -FYI (TITE) u

④ The spring and mass properties ( K, m)
determine uniquely the period and frequency ..

④ The amplitude of motion does not affect

the period or frequency .



④ Angular frequency (co) : Number of radians ⑨

per second .

For xA) = AsinCRE t) t B cos(TEI t) ,
the phase in radians after I second is

w = JKTM

Related quantity :

"

frequency " H ) is the number
of full cycles (2K) per second .

f- = ¥-
Phase after 2 second .

If u = 4K, then there
will be 2 cycles/see .

Period (T) : time to complete one full
cycle (2T) of motion .

For xA) = AsinCRE t) t B cos(TEI t)
IET = 2e

⇒ Te TE
'

2e

T = ⇐
W



④
Example : Consider a mass m that hangs from
a nearly massless rope of length L . If the

mass is pulled through a small angle Go and
released from rest , what will be the resulting
motion Oct) ?

T
solution : r

Fo L
.

÷.mg
cosQ

m MT
mgsino

④ Since mass does not accelerate radially ,
T = mgcost

④ The tangential acceleration is
( al t 2w¥f) to = alia

From Fe = mao. we find

-1mg sin Q = #Edt
DZE

⇒ ft
=
- E s inQ



In the small angle approximation ④

Sino - Q .

Therefore we find the differential equation
describing the motion of a pendulum :

dzodtz = C- E) a

Note that this is exactly the same form as
d2x
dtz =/

- km) x

④ General solution :

Oct) = A sin (VEt) t Bcosfffit)
Initial condition l ) Q (o) = O_O
Initial condition 2) w (o) = O

⇒ 0-10) = B cos Co) = B = O_O

⇒ w co) = ATE cos co) = ATE = O ⇒ A -- o



The complete motion at any time is therefore ④

Ott) = Oo cosHE't)
> angular frequency w -

- TE

> period T= 2 it off
'

④ The period is larger for large L or small g ..

what is the consequence for how fast you
can walk on Earth ?

Answer > How fast you walk is related to the
natural period of your swinging leg . Therefore

,

you will walk slower on the Moon since the

period of pendulum motion is larger .

9moon " To 9 Earth


