PHYS 206 Lecture 11
11.1) Oscillating systems
11.2) Differential equation for oscillations
N. 3) Applications
11.1) Oscillating systems
(*) Many objects in the real world undergo oscillatory motion.
\rightarrow Pull on a tree branch, and it will return to its original position after undergoing a few oscillations.
\rightarrow Drop a rock in a lake and the water waves will oscillate in time.
\rightarrow Springs
\rightarrow Pendulum

* Oscillating systems are common because systems are often at the minimum of potential energy and once disturbed they want to return to that minimum.

$$
\begin{equation*}
F\left(x_{1}\right)=-\frac{d u}{d x}>0 \tag{2}
\end{equation*}
$$

$\Rightarrow F\left(x_{1}\right)$ is to the right

$$
F\left(x_{2}\right)=-\frac{d u}{d x}<0
$$

$\Rightarrow F\left(x_{2}\right)$ is to the left

$$
F\left(x_{0}\right)=-\frac{d U}{d x}=0 \text { (equilibrium) }
$$

11.2) Differential equation for oscillations

* Taylor series expansion of the potential energy function about its minimum value:

$$
\begin{aligned}
& U(x)= U\left(x_{0}\right)+\frac{U^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} U^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\cdots}{=0 \text { since } x_{0} \text { is at minimum }} \\
&=U\left(x_{0}\right)+\frac{1}{2} U^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\cdots \\
& \Rightarrow F(x)=\frac{-d U}{d x}=-U^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots
\end{aligned}
$$

Normally convenient to define origin to be at x_{0} (like we did with springs):

$$
F(x)=-k x+\cdots \quad\left(\text { where } k=U^{\prime \prime}\left(x_{0}\right)>0\right)
$$

(*) Fundamental equation for oscillations:

$$
F=-K x
$$

This is a
(1) linear (proportional to x)
(2) restoring (opposite to displacement) type of force.

* From Newton's 2nd Law :

$$
\begin{aligned}
\vec{F} & =m \vec{a} \\
-k x & =m \frac{d^{2} x}{d t^{2}} \text { (differential equation) } \\
\text { (depends } & \text { and derivative of } \\
\text { imp } x(t) & x(t)
\end{aligned}
$$

$$
\Rightarrow \quad \frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x(t)
$$

*) What function $x(t)$ has a second derivative proportional to - itself??

Answer: Some combination of \sin and \cos.
Let $x(t)=A \sin (\omega t)+B \cos (\omega t)$.
Then $\frac{d x}{d t}=A \omega \cos (\omega t)-B \omega \sin (\omega t)$
and $\frac{d^{2} x}{d t^{2}}=-\omega^{2} A \sin (\omega t)-\omega^{2} B \cos (\cos t)$

$$
=-\omega^{2}[A \sin (\omega t)+B \cos (\omega t)]
$$

$$
=-\omega^{2}[x(t)]
$$

In order for Newton's and Law to be satisfied

$$
\omega=\sqrt{\frac{k}{m}}
$$

General solution:

$$
x(t)=A \sin \left(\sqrt{\frac{k}{m}} t\right)+B \cos \left(\sqrt{\frac{k}{m}} t\right)
$$

A and B are undetermined constants that are fixed by the initial conditions of the system.
11.3) Applications

* Simplest application is to springs, for which $\vec{F}(x)=-K x \hat{\imath}_{x}$.

Example: A block of mass m is connected to a spring with spring constant K that is compressed a distance d and released from rest. What is the resulting position of the block as a function of time?

Solution:

$$
\begin{aligned}
& F=-k x=m a=m \frac{d^{2} x}{d t^{2}} \\
& \Rightarrow \frac{d^{2} x}{d t^{2}}=\left(-\frac{k}{m}\right) x
\end{aligned}
$$

\Rightarrow General solution is

$$
x(t)=A \sin \left(\sqrt{\frac{k}{m}} t\right)+B \cos \left(\sqrt{\frac{k}{m}} t\right)
$$

(*) Note that the initial conditions are
(i) "compressed a distance $d^{\prime \prime} \Rightarrow \times(0)=-d$
(ii) "released from rest" $\Rightarrow v(0)=0$

Plugging in we find

$$
\begin{gathered}
x(0)=-d \\
A \sin \left(\sqrt{\frac{k}{m}} 0\right)+B \cos \left(\sqrt{\frac{k}{m}} 0\right)=-d \\
B=-d
\end{gathered}
$$

Since $x(t)=A \sin \left(\sqrt{\frac{k}{m}} t\right)+B \cos \left(\sqrt{\frac{k}{m}} t\right)$,

$$
V(t)=A \sqrt{\frac{k}{m}} \cos \left(\sqrt{\frac{k}{m}} t\right)-B \sqrt{\frac{k}{m}} \sin \left(\sqrt{\frac{k}{m}} t\right)
$$

Therefore, $v(0)=0$

$$
\begin{aligned}
& \Rightarrow \quad A \sqrt{\frac{k}{m}} \cos \left(\sqrt{\frac{k}{m}} 0\right)-B \sqrt{\frac{k}{m}} \sin \left(\sqrt{\frac{k}{m}} 0\right)=0 \\
& \Rightarrow \quad A \sqrt{\frac{k}{m}}=0 \Rightarrow A=0 \\
& \Rightarrow \quad x(t)=-d \cos \left(\sqrt{\frac{k}{m}} t\right)
\end{aligned}
$$

Period given by

$$
\begin{aligned}
& \sqrt{\frac{k}{m}} T=2 \pi \\
& \Rightarrow T=\frac{2 \pi}{\omega}
\end{aligned}
$$

From $x(t)$ we can of course calculate also $V(t)$ and $a(t)$:

$$
V(t)=d \sqrt{\frac{k}{m}} \sin \left(\sqrt{\frac{k}{m}} t\right), \text { etc. }
$$

(*) There are lots of different variations depending on the initial conditions.

Example: Block m_{2} at rest on spring. An incoming block m_{1} with speed v_{1} collides and sticks to m_{2}. What is the motion after collision? Neglect any friction.

Solution:
Momentum conservation
 gives

$$
\begin{aligned}
-m_{1} v_{1} & =\left(m_{1}+m_{2}\right) v \\
\Rightarrow v(0) & =-\frac{m_{1}}{m_{1}+m_{2}} v_{0} \quad(\text { initial condition 1) } \\
x(0) & =0 \quad(\text { initial condition 2) }
\end{aligned}
$$

Now Newton's and Law gives

$$
\begin{gathered}
\vec{F}=m \vec{a} \Rightarrow-K x=\left(m_{1}+m_{2}\right) \frac{d^{2} x}{d t^{2}} \\
\Rightarrow \frac{d^{2} x}{d t^{2}}=\left(-\frac{k}{m_{1}+m_{2}}\right) x
\end{gathered}
$$

Same general solution as before

$$
x(t)=A \sin \left(\sqrt{\frac{k}{m}} t\right)+B \cos \left(\sqrt{\frac{k}{m}} t\right) \quad m \equiv m_{1}+m_{2}
$$

But now $x(0)=0 \Rightarrow B=0$

$$
\text { And } \begin{aligned}
& v(0) \\
& \Rightarrow A \sqrt{\frac{k}{m}}=\frac{-m_{1}}{m_{1}+m_{2}} v_{1} \\
& \Rightarrow \Rightarrow A=-\sqrt{\frac{m_{1}+m_{2}}{k}} v_{1} \\
& \Rightarrow\left(\frac{m_{1}}{m_{1}+m_{2}}\right) v_{1}
\end{aligned}
$$

* The spring and mass properties (k, m) determine uniquely the period and frequency.
* The amplitude of motion does not affect the period or frequency.
* Angular frequency (ω) : Number of radians per second.
For $x(t)=A \sin \left(\sqrt{\frac{k}{m}} t\right)+B \cos \left(\sqrt{\frac{k}{m}} t\right)$, the phase in radians after I second is

$$
\omega=\sqrt{k / m}
$$

Related quantity: "frequency" (f) is the number of fall cycles (2π) per second.

$$
f=\frac{\omega}{2 \pi}
$$

Phase after 1 second. If $\omega=4 \pi$, then there will be 2 cycles $/ \mathrm{sec}$.
Period (T) : time to complete one full cycle (2π) of motion.

$$
\text { For } \begin{aligned}
& x(t)=A \sin \left(\sqrt{\frac{k}{m}} t\right)+B \cos \left(\sqrt{\frac{k}{m}} t\right) \\
& \sqrt{\frac{k}{m}} T=2 \pi \\
& \Rightarrow T=\sqrt{\frac{m}{k}} 2 \pi \\
& T=\frac{2 \pi}{\omega}
\end{aligned}
$$

Example: Consider a mass m that hangs from a nearly massless rope of length L. If the mass is pulled through a small angle θ_{0} and released from rest, what will be the resulting motion $\theta(t)$?

Solution:

* Since mass does not accelerate radially,

$$
T=m g \cos \theta
$$

(*) The tangential acceleration is

$$
\left(\alpha L+2 \omega \frac{d x}{d t}\right) \hat{\imath}_{\theta}=\alpha L \hat{\imath}_{\theta}
$$

From $F_{\theta}=m a_{\theta}$ we find

$$
\begin{aligned}
& -\mu h \sin \theta=\mu L \frac{d^{2} \theta}{d t} \\
& \Rightarrow \quad \frac{d^{2} \theta}{d t^{2}}=-\frac{g}{L} \sin \theta
\end{aligned}
$$

In the small angle approximation

$$
\sin \theta \approx \theta
$$

Therefore we find the differential equation describing the motion of a pendulum:

$$
\frac{d^{2} \theta}{d t^{2}}=\left(-\frac{g}{L}\right) \theta
$$

Note that this is exactly the same form as

$$
\frac{d^{2} x}{d t^{2}}=\left(-\frac{k}{m}\right) x
$$

* General solution:

$$
\theta(t)=A \sin \left(\sqrt{\frac{g}{L}} t\right)+B \cos \left(\sqrt{\frac{g}{L}} t\right)
$$

Initial condition 1) $\theta(0)=\theta_{0}$
Initial condition 2) $\omega(0)=0$

$$
\begin{aligned}
& \Rightarrow \theta(0)=B \cos (0)=B=\theta_{0} \\
& \Rightarrow \omega(0)=A \sqrt{\frac{g}{L}} \cos (0)=A \sqrt{\frac{g}{L}}=0 \Rightarrow A=0
\end{aligned}
$$

The complete motion at any time is therefore

$$
\begin{aligned}
& \theta(t)=\theta_{0} \cos \left(\sqrt{\frac{g}{L}} t\right) \\
& \longrightarrow \text { angular frequency } \omega=\sqrt{\frac{g}{L}} \\
& \longrightarrow \text { period } T=2 \pi \sqrt{\frac{L}{g}}
\end{aligned}
$$

* The period is larger for large L or small g.

What is the consequence for how fast you can walk on Earth?
Answer \longrightarrow How fast you walk is related to the natural period of your swinging leg. Therefore, you will walk slower on the Moon since the period of pendulum motion is larger.

$$
g_{\text {moon }} \approx \frac{1}{6} g_{\text {Earth }}
$$

