PHYS 206 Lecture 10
10.1) Conservation of Angular Momentum 10.2) Applications
10.1) Conservation of Angular Momentum
(*) We already showed last lecture that a freely moving object has a constant angular momentum.

* More generally, angular momentum will be conserved when there are no external torques acting on the system:

$$
\vec{\tau}_{\text {ext }}=\frac{d \vec{L}}{d t} \quad\left(\text { like } \vec{F}=\frac{d \vec{\varphi}}{d t}\right)
$$

Examples where $\vec{\tau}_{\text {ext }}=0$:

Ball held in circular motion on frictionless table by string.
String always acts radially, so $\vec{\tau}_{\text {ext }}=\vec{r} \times \vec{F}=0$.
(b)

Solid body freely rotating on frictionless axel.
Even if bug crawls on it, there is no external torque acting on the combined rod t bug system.
(c)

Figure skater rotating on frictionless ice.
Bringing arms in close to body reduces I and so w must increase to keep $L=I \omega$ constant.
(d)

Angular momentum conserved in collisions because no external torques act during that time.
10.2) Applications

Let's look at some sample problems that put everything together.

Exam $3(2010)$ Q 2

(4) If you see a collision question, first think "angular momentum conservation".
Angular momentum before collision:
Block at rest $\Rightarrow 0$
when bullet makes impact

$$
\begin{aligned}
\dot{L}_{b} & =\vec{r} \times \vec{p}=r p \sin \theta_{r p} \odot \\
& =r p \sin \left(\frac{\pi}{2}+\phi\right) \odot=s m_{2} V_{1} \cos \phi \odot
\end{aligned}
$$

Angular momentum after collision:
Block: $\vec{L}=I \omega \odot=\left(m, s^{2}\right) \omega \odot$
Bullet: $K E_{f}=\frac{1}{2} m v_{f}^{2}=\frac{1}{4} K E_{f}=\frac{1}{4}\left(\frac{1}{2} m_{2} v_{1}^{2}\right)$

$$
\Rightarrow V_{f}=\frac{1}{2} V_{1}
$$

$$
\begin{aligned}
\vec{L}_{b}^{\prime} & =\vec{r}^{\prime} \times \vec{p}^{\prime}=s m_{2} v_{f} \overbrace{\left(\sin 90^{\circ}\right)}^{\prime \prime} \odot \\
& =\frac{1}{2} s m_{2} v_{1} \odot
\end{aligned}
$$

$$
\begin{aligned}
L_{f} & =m_{1} s^{2} \omega+\frac{1}{2} s m_{2} v_{1} \\
L_{i} & =L_{f} \\
s m_{2} v_{1} \cos \phi & =m_{1} s^{2} \omega+\frac{1}{2} s m_{2} v_{1} \\
& \Rightarrow \omega=\frac{1}{m_{1} s^{2}}\left(s m_{2} v_{1} \cos \phi-\frac{1}{2} s m_{2} v_{1}\right) \\
\omega & =\frac{m_{2}}{m_{1} s} v_{1}\left(\cos \phi-\frac{1}{2}\right)
\end{aligned}
$$

Exam 3 (2011) Q2
$I \xrightarrow[\underbrace{}_{D}]{\psi_{0}^{\omega_{0}} \rightarrow V=C}$
(a) What is bug's velocity
(b) Torque exerted by rod on the bug?
To find velocity, we need to find how fast rod rotates \rightarrow get using angular momentum conservation:

$$
\begin{aligned}
& L_{i}=I_{i} \omega_{i}=\left(I+m D^{2}\right) \omega_{0} \\
& L_{f}=I_{f} \omega_{f}=(I+m(\underbrace{(D+c t)^{2}}_{r(t)}) \omega_{f} \\
& \Rightarrow \omega_{f}=\frac{I+m D^{2}}{I+m(D+c t)^{2}} \omega_{0}
\end{aligned}
$$

Then $\vec{v}_{b}=\frac{d r}{d t} \hat{\imath}_{r}+r \omega \hat{\imath}_{\theta}$

$$
=c \hat{\iota}_{r}+(D+c t) \omega_{f} \hat{\iota}_{\theta}
$$

How to find torque? Need to first find the force:

$$
\vec{F}=m \vec{a}=m\left[\left(\frac{d^{2} r}{d t^{2}}-r \omega^{2}\right) \hat{\imath}_{r}+\left(r \alpha+2 \omega \frac{d r}{d t}\right) \hat{\imath}_{\theta}\right]
$$

Then $\vec{\tau}=\vec{r} \times \vec{F}=r \hat{\imath}_{r} \times\left[m a Y_{r}^{0}+m a_{\theta} \hat{\iota}_{\theta}\right]$

$$
\begin{aligned}
& \hat{\iota}_{r} \times \hat{\imath}_{r}=0 \\
&=r m a_{\theta}=r m\left(r \alpha+2 \omega \frac{d r}{d t}\right) \\
& r(t)=D+c t \rightarrow \frac{d r}{d t}=c \\
& \omega(t)=\frac{D^{2}}{(D+c t)^{2}} \omega_{0} \rightarrow \alpha=\frac{-2 D^{2}(c)}{(D+c t)^{3}} \\
& \Rightarrow r \alpha+2 \omega \frac{d r}{d t}=(D+c t)\left[\frac{-2 c D^{2}}{(D+c t)^{3}}\right]+2 \frac{D^{2}}{(D+c t)^{2}} c \\
&=0 \\
& \Rightarrow \vec{\tau}=0
\end{aligned}
$$

