8) Simple Harmonic Motion: for time dependence
of spring motion.
()
$$\vec{F} = m\vec{a} = m\frac{d^2\vec{x}}{dt^2}$$
 ($F = -Kx$)
() $\frac{d^2x}{dt^2} = -\left(\frac{K}{m}\right) \times$
(2) $\frac{d^2x}{dt^2} = -\left(\frac{K}{m}\right) \times$
(3) Most general solution is
 $\times (t) = A \sin(\omega t) + B \cos(\omega t)$
 $Find A and B from initial conditions$
 $\times (c)$ and $\vee (c)$.
(*) One full oscillation occurs when $\omega t = 2\pi$
 $\Rightarrow t = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{K}}$
Likewise for half or guarter motion.