EXAM III Physics 206 FALL 2020

Last Name \qquad First \qquad Section Number

USEFUL EQUATIONS

If $f(x)=a x^{n}$, then

$$
\begin{aligned}
\frac{d f}{d x} & =n a x^{n-1} \\
\int f(x) d x & =\frac{a}{n+1} x^{n+1}+C
\end{aligned}
$$

Work - Kinetic Energy Theorem:

$$
\int_{\vec{r}_{1}}^{\vec{r}_{2}} \vec{F}_{t o t} \cdot d \vec{r}=\frac{1}{2} m v^{2}\left(\vec{r}_{2}\right)-\frac{1}{2} m v^{2}\left(\vec{r}_{1}\right) .
$$

If \vec{F} is conservative, then there exists a potential energy function U such that

$$
U\left(\vec{r}_{2}\right)-U\left(\vec{r}_{1}\right)=-\int_{\vec{r}_{1}}^{\overrightarrow{\vec{r}_{2}}} \vec{F} \cdot d \vec{r}
$$

and

$$
\begin{aligned}
& F_{x}=-\frac{\partial U}{\partial x}, \quad F_{y}=-\frac{\partial U}{\partial y} . \\
& \vec{L}=\vec{r} \times \vec{p}, \quad \vec{\tau}=\vec{r} \times \vec{F}
\end{aligned}
$$

Moment of inertia:

$$
I=L / \omega, \quad I=m r^{2} \text { (point particle) }
$$

Note: The symbol g stands for the magnitude of the acceleration due to gravity, and therefore it is always a positive quantity.

Free-body force diagrams are very important!
Do not spend too much time on algebra!

1. (25 points) Derive the expressions for velocity and acceleration in polar coordinates (that is, in terms of the unit vectors \hat{i}_{r} and \hat{i}_{θ}).

Law

Application

$$
\begin{aligned}
& \vec{r}=\hat{1} \hat{l}_{r} \quad \hat{l}_{r}=\cos \theta(t) \hat{\imath}+\sin \theta(t) \hat{\jmath} \\
& \hat{\imath}_{\theta}=-\sin \theta(t) \hat{\imath}+\cos \theta(t) \hat{\jmath} \\
& \frac{d \hat{\imath}_{r}}{d t}=-\sin \theta \frac{d \theta}{d t} \hat{\imath}+\cos \theta \frac{d \theta}{d t} \hat{\jmath}=\frac{d \theta}{d t}(-\sin \theta \hat{\imath}+\sin \theta)= \\
& =\frac{d \theta}{d t} \prod_{\theta} \\
& \frac{d \hat{\imath}_{\theta}}{d t}=-\cos ^{2} \theta \frac{d \theta}{d t} \hat{\imath}-\sin \theta \frac{d \theta}{d t} \hat{\jmath}=-\frac{d \theta}{d t} \hat{\imath} r \\
& =\frac{d^{2} r}{d t^{2}} \hat{\tau}_{r}+\frac{d r}{d t} \frac{d \theta}{d t} \hat{\tau}_{\theta}+\frac{d r}{d t} \frac{d \theta}{d t} \tau_{\theta}+r \frac{d \theta}{d+2} \tau_{\theta}-v\left(\frac{d \theta}{d 4}\right) \frac{\left(\lambda_{r}\right.}{\tau_{r}}
\end{aligned}
$$

Result
2. (25 points) A ball of mass m is superglued to the end of a metal rod of length L that rotates horizontally about a vertical axle. At time $t=0$ the ball and rod start from rest and undergo angular acceleration $\alpha=c_{1} t$, where c_{1} is a constant. If the ball breaks free at time t_{b}, what is the maximum force that the glue can hold? Neglect the small effects due to gravity.

Law

$$
\vec{F}=m \vec{a} \quad \quad \quad, \quad 3=\sqrt{a_{r}^{2}+a_{\theta}^{2}}
$$

Application

$$
\begin{aligned}
& (2) F_{\text {max }}=m \sqrt{L^{2}\left(\frac{c L_{b}^{2}}{2}\right)^{4}+L^{2} c^{2} \frac{t}{b}} \\
& \text { IF no } a_{\theta} \text { at all, }-7
\end{aligned}
$$

3. (25 points) A satellite of mass m_{1} rotates around Planet X with mass m_{2} in a circular orbit. The magnitude of the gravitational force is $F=G \frac{m_{1} m_{2}}{r^{2}}$, where G is a positive constant and r is the distance between the two masses. (i) What speed must the satellite have in order to orbit at a radius R ? (ii) If at time $t=0$, the satellite uses thrusters to move from the position $(r=R, \theta=0)$ to $\left(r=2 R, \theta=90^{\circ}\right)$, how much work is done by gravity along the satellite's path?

Law

$$
\text { (3) } W=\int_{R_{1}}^{R_{2}} F_{r} d r+\int_{\theta_{1}}^{\theta_{2}} F_{\theta} r d \theta
$$

$$
G \frac{(2)}{m_{1} m_{2}}=\frac{1}{m_{1}^{2}}=\frac{3}{m_{1}}
$$

$$
\omega^{2}=G \frac{m_{2}}{r^{3}}
$$

$$
\begin{aligned}
W= & \int_{R}^{2 R} F_{r} d r=\int_{n(1)}^{12 R}-G \\
& =-G \frac{m_{1} m_{2}}{2 R} \text { (1) }
\end{aligned}
$$

Result
4. (25 points) A boy and girl with the same mass m run with the same speed v toward a stationary merry-go-round of radius R that is free to rotate around a frictionless axle through its center. The merry-go-round has moment of inertia I_{0}. (i) If the two students run horizontally and land at the distances R and $R / 2$ as shown in the figure, what will be the magnitude of the angular velocity of the merry-go-round after the students land? (ii) If the girl then walks in a straight line to the boy at $r=R$, what is the final angular velocity of the merry-go-round?

Law

$$
\mathcal{L}=\vec{r} \times m \vec{v} \quad \vec{L}
$$

Application
(1)
(2)

Result

