Exam 3 Review
4 Types of Questions to expect:
(1) Derive \vec{v} and \vec{a} in polar coordinates
(2) "Inverse Newton's Laws" \longrightarrow From the motion, find the force (or torque, etc.)
(3) Work and potential energy for radial forces
(4) Conservation of angular momentum
(1) \vec{v} and \vec{a} in polar coordinates

Can start by assuming only 3 things:
(1) $\vec{r}=r \hat{c}_{r}$
(2) $\hat{i}_{r}=\cos \theta \hat{c}_{x}+\sin \theta \hat{c}_{y}$
(3) $\hat{\imath}_{\theta}=-\sin \theta \hat{\imath}_{x}+\cos \theta \hat{c}_{y}$

Must derive $\frac{d}{d t}\left(\hat{\imath}_{r}\right)=\frac{d \theta}{d t} \hat{\imath}_{\theta}$ and

$$
\frac{d}{d t}(i \theta)=-\frac{d \theta}{d t} \hat{i}_{r}
$$

using the derivative chain rule.

From those two relations, calculate

$$
\begin{aligned}
& \vec{v}=\frac{d \vec{r}}{d t}=\frac{d}{d t}\left(r \hat{c}_{r}\right)=\ldots \quad \text { and } \\
& \vec{a}=\frac{d \vec{v}}{d t}=\frac{d}{d t}\left(\frac{d r}{d t} \hat{c}_{r}+r \frac{d \theta}{d t} \hat{c}_{\theta}\right)=\ldots
\end{aligned}
$$

using the derivative product rule.

* Be sure not to skip steps!
(2) "Inverse Newton's Laws"

Ask yourself: "Am I given the motion?"
This means either $\{r(t), \theta(t)\}$ or

$$
\begin{aligned}
& \{r(t), \omega(t)\} \text { or } \\
& \{r(t), \alpha(t)\} .
\end{aligned}
$$

From any one of those combinations, you can compute everything that enters into the definitions of

$$
\begin{gathered}
\vec{v}=\frac{d r}{d t} \hat{\imath}_{r}+r \frac{d \theta}{d t} \hat{c}_{\theta} \quad \text { and } \\
\vec{a}=\left(\frac{d^{2} r}{d t^{2}}-r \omega^{2}\right) \hat{c}_{r}+\left(r \alpha+2 \omega \frac{d r}{d t}\right) \hat{c}_{\theta}
\end{gathered}
$$

You might need to use

$$
\begin{aligned}
& \omega(t)=\int \alpha(t) d t \text { and } \\
& \theta(t)=\int \omega(t) d t .
\end{aligned}
$$

Once \vec{v} and \bar{a} are known, you can compute many quantries:

$$
\begin{aligned}
\vec{F}_{\text {total }} & =m \vec{a} \\
\vec{\tau} & =\vec{r} \times \vec{F}=\vec{r} \times(m \stackrel{a}{a}) \\
& =m\left(r \hat{\imath}_{r}\right) \times\left(a_{r} \hat{\imath}_{r}+a_{\theta} \hat{\imath}_{\theta}\right)=m r a_{\theta}\left[\hat{\imath}_{r} \times \hat{\imath}_{\theta}\right] \\
\vec{L} & =\vec{r} \times \vec{\rho}=\vec{r} \times(m \vec{v}) \\
& =m\left(r \hat{\imath}_{r}\right) \times\left(v_{r} \hat{\imath}_{r}+v_{\theta} \hat{\imath}_{\theta}\right)=m r v_{\theta}\left[\hat{\imath}_{r} \times \hat{\imath}_{\theta}\right] \\
& =m r^{2} \omega\left[\hat{\imath}_{r} \times \hat{\imath}_{\theta}\right]
\end{aligned}
$$

*) In many cases, you will need to relate the total force you get from $\vec{F}_{\text {total }}=m \vec{a}$ to an underlying fundamental force (e.g., gravity, friction, etc.).
(i) Friction is responsible for cars making turns, for boxes staying on conveyor belts, etc.
(ii) Tension in a string might be responsible for the motion of a swinging object.
(iii) Gravity underlying cause of a satellite's motion, moon's orbit around Earth, etc.
Once you have identified physical force causing an object's motion, just equate it to

$$
\vec{F}_{\text {total }}=m \vec{a}=m\left(\frac{d^{2} r}{d t^{2}}-r \omega^{2}\right) \hat{\imath}_{r}+m\left(r \alpha+2 \omega \frac{d r}{d t}\right) \hat{\imath}_{\theta} \text {. }
$$

* Important point: If you are given $r(t)$ but nothing about $\omega(t)$, you might need to use angular momentum conservation (se ebelow) to determine $\omega(t)$.
(3) Work and potential energy

Compute work done by a force as

$$
\omega=\int \vec{F} \cdot d \vec{r}=\int \vec{F} \cdot\left(d r \hat{\iota}_{r}+r d \theta \hat{\iota}_{r}\right)
$$

If $\vec{F}(r)=F(r) \hat{\imath}_{r}$, then $\vec{F} \cdot d \vec{r}=F(r) d r$ and $\omega=\int_{r_{1}}^{r_{2}} F(r) d r$ (since $\hat{c}_{r} \cdot \hat{\imath}_{\theta}=0$)

Likewise, the potential energy is

$$
U=-\int F(r) d r
$$

4) Conservation of angular momentum

Two types of angular momentum:
(i) point particle: $\vec{L}=\vec{r} \times \vec{\phi}$
object's position rector momentum vector
(*) Note that a freely-moving particle has constant \vec{L}, so calculate $\vec{r} \times \vec{\phi}$ any where it is most convenient.

Example:
$\vec{L}_{1}=\vec{r} \times \vec{p}$ just before impact is

$$
\vec{p}{\underset{V}{\theta_{i}}}_{\stackrel{\rightharpoonup}{r}}^{L_{1}}=s\left(m_{1} v_{0}\right) \sin \left(90^{\circ}+\theta\right) \underset{\text { into page }}{\otimes}
$$

(ii) Rigid body angular momentum:
$\vec{L}=I \omega$ (curl fingers in direction of ω, then thumb points in direction of \vec{L})

Note that for a point mass, $I=m r^{2}$
If you have multiple objects, the total moment of inertia is just the sum

$$
I=I_{1}+I_{2}+\cdots
$$

Conservation of angular momentum is often used to find $\omega(t)$:

$$
I_{0} \omega_{0}=I(t) \omega(t)
$$

Changing moment of inertia causes changing angular velocity (figure skater).

