EXAM III Physics 206 FALL 2020

Last Name. \qquad First. \qquad Section Number.

USEFUL EQUATIONS

If $f(x)=a x^{n}$, then

$$
\begin{aligned}
\frac{d f}{d x} & =n a x^{n-1} \\
\int f(x) d x & =\frac{a}{n+1} x^{n+1}+C
\end{aligned}
$$

Work - Kinetic Energy Theorem:

$$
\int_{\vec{r}_{1}}^{\vec{r}_{2}} \vec{F}_{t o t} \cdot d \vec{r}=\frac{1}{2} m v^{2}\left(\vec{r}_{2}\right)-\frac{1}{2} m v^{2}\left(\vec{r}_{1}\right) .
$$

If \vec{F} is conservative, then there exists a potential energy function U such that

$$
U\left(\vec{r}_{2}\right)-U\left(\vec{r}_{1}\right)=-\int_{\vec{r}_{1}}^{\vec{r}_{2}} \vec{F} \cdot d \vec{r}
$$

and

$$
\begin{aligned}
& F_{x}=-\frac{\partial U}{\partial x}, F_{y}=-\frac{\partial U}{\partial y} . \\
& \vec{L}=\vec{r} \times \vec{p}, \\
& \vec{\tau}=\vec{r} \times \vec{F}
\end{aligned}
$$

Moment of inertia:

$$
I=L / \omega, \quad I=m r^{2}(\text { point particle })
$$

Note: The symbol g stands for the magnitude of the acceleration due to gravity, and therefore it is always a positive quantity.

Free-body force diagrams are very important!
Do not spend too much time on algebra!

