$\qquad$

## USEFUL EQUATIONS

If $f(x)=a x^{n}$, then

$$
\begin{aligned}
\frac{d f}{d x} & =n a x^{n-1} \\
\int f(x) d x & =\frac{a}{n+1} x^{n+1}+C
\end{aligned}
$$

Work - Kinetic Energy Theorem:

$$
W=\int_{\vec{r}_{1}}^{\vec{r}_{2}} \vec{F}_{t o t} \cdot d \boldsymbol{\zeta}=\frac{1}{2} m v^{2}\left(\vec{r}_{2}\right)-\frac{1}{2} m v^{2}\left(\vec{r}_{1}\right) .
$$

If $\vec{F}$ is conservative, then there exists a potential energy function $U$ such that

$$
U\left(\vec{r}_{2}\right)-U\left(\vec{r}_{1}\right)=-\int_{\vec{r}_{1}}^{\overrightarrow{\vec{r}_{2}}} \vec{F} \cdot d \vec{r}
$$

and

$$
F_{x}=-\frac{\partial U}{\partial x}, \quad F_{y}=-\frac{\partial U}{\partial y}
$$

Note: The symbol $g$ stands for the magnitude of the acceleration due to gravity, and therefore it is always a positive quantity.

Free-body force diagrams are very important!
Do not spend too much time on algebra!

1. (25 points) Two blocks of mass $m_{1}$ and $m_{2}$ are held at rest by a wire directed down a frictionless inclined plane as shown in the figure. At times $t<0$ the wire provides a constant force $F_{0}$. (i) What value of $F_{0}$ is needed so that both blocks remain at rest? At time $t=0$ the external force starts to increase according to $F(t)=F_{0}+\alpha t$, where $\alpha$ is a positive constant. (ii) What is the speed of block $m_{2}$ as a function of time?

Law

2. (25 points) An object of mass $m$ starts at $x=A$ with a speed $v_{1}$ in the $+x$ direction. For $x>A$ the surface has a coefficient of friction $\mu(x)=\frac{\alpha}{x^{2}}$, where $\alpha$ is a positive constant. Calculate the work done by friction from $x=A$ to an arbitrary point $x=B$ along the box's path of motion. What is the object's kinetic energy at $x=B$ ?




Result
3. (25 points) A small box with mass $m$ is released from rest by a spring compressed a distance $d$. The spring constant is $k$. After being released, the object slides along a frictionless track. What is the speed of the box when it reaches point $B$ at height $h / 2$ ? What must be the value of $d$ so that the box comes to rest at the top of the track at point $C$ ?

4. (25 points) A bullet of mass $m$ travels with speed $v$ towards a block that is initially at rest. The bullet cuts the block into two pieces with masses $m_{1}$ and $m_{2}$. After the impact, the bullet continues on its original path but with a reduced speed $v^{\prime}$, while masses $m_{1}$ and $m_{2}$ travel with speeds $v_{1}$ and $v_{2}$ at the angles $\theta_{1}$ and $\theta_{2}$. If $\theta_{1}$ and $\theta_{2}$ are known, find the values of $v_{1}$ and $v_{2}$.

Law


Application


$$
m_{2} v_{2} \frac{s_{14} \theta_{3}}{s_{1} t_{1}}
$$

$$
m V-m V^{\prime} 2 m_{1} v_{1} \cos \theta_{1}+m_{2} V_{2} \cos \theta_{2}=\frac{m_{2} V_{2}}{\sin \theta_{1}} \sin \theta_{2} \cos \theta_{1}+
$$

$$
=\frac{m\left(v-v^{\prime}\right) \sin \theta_{1}}{\sin \left(\theta_{1}+\theta_{2}\right)}
$$

$$
V_{1}=\frac{m_{2}}{m_{1}} \frac{\sin \theta_{2}}{\sin \theta_{1}} V_{2}
$$

Result

$$
\begin{aligned}
& \text { (2) } \\
& m V \hat{\imath}=\left(m_{1} V^{\prime}+m, V_{1} \cos \theta_{1}+m_{2} V_{2} \cos \theta_{2}\right) \hat{\imath}+ \\
& +\left(m_{1} v_{1} \sin \theta_{1}-m_{2}\left(V_{2} \sin \theta_{2}\right) \hat{1}\right. \\
& m_{1} r_{1} \sin \theta_{1}=m_{2} r_{2} \sin \theta_{2} \\
& \begin{aligned}
& +m_{2} V_{2} \cos \theta_{2} \\
m_{2} V_{2} & =\frac{m\left(v-v^{\prime}\right)}{\cos \theta_{2}+\frac{\sin \theta_{2} \cos \theta_{1}}{\sin \theta_{1}}} \\
V_{2} & =\frac{m_{1}}{m_{2}} \frac{V-V^{\prime}}{\sin \left(\theta_{1}+\theta_{2}\right)} \sin \theta_{1} \\
V_{1} & =\frac{m_{1}}{m_{1}} \frac{V-v^{\prime}}{\sin \left(\theta_{1}+\theta_{2}\right)} \sin \theta_{2}
\end{aligned} \\
& \begin{aligned}
& +m_{2} V_{2} \cos \theta_{2} \\
m_{2} V_{2} & =\frac{m\left(v-V^{\prime}\right)}{\cos \theta_{2}+\frac{\sin \theta_{2} \cos \theta_{1}}{\sin \theta_{1}}} \\
V_{2} & =\frac{m^{m}-V^{\prime}}{m_{2}} \sin \theta_{1} \\
V_{1} & =\frac{m_{1}}{m_{1}} \frac{\left.V-V_{1}^{\prime}+\theta_{2}\right)}{\sin \left(\theta_{1}+\theta_{2}\right)} \sin \theta_{2}
\end{aligned} \\
& \begin{aligned}
& +m_{2} V_{2} \cos \theta_{2} \\
m_{2} V_{2} & =\frac{m\left(v-V^{\prime}\right)}{\cos \theta_{2}+\frac{\sin \theta_{2} \cos \theta_{1}}{\sin \theta_{1}}} \\
(1) \quad V_{2} & =\frac{m_{1}}{m_{2}} \frac{V V^{\prime}}{\sin \left(\theta_{1}+\theta_{2}\right)} \sin \theta_{1} \\
V_{1} & =\frac{m_{1}}{m_{1}} \frac{V-V^{\prime}}{\sin \left(\theta_{1}+\theta_{2}\right)} \sin \theta_{2}
\end{aligned} \\
& m_{1} v_{1}=
\end{aligned}
$$

