USEFUL EQUATIONS

If $f(x) = a x^n$, then

$$\frac{df}{dx} = n a x^{n-1}$$
$$\int f(x) dx = \frac{a}{n+1} x^{n+1} + C$$

For motion under $\underline{constant acceleration} a$, the following formulas hold:

$$v(t) = at + v(0)$$
$$x(t) = \frac{1}{2}at^{2} + v(0)t + x(0)$$
$$v^{2}(t_{2}) - v^{2}(t_{1}) = 2a[x(t_{2}) - x(t_{1})]$$

Note: The symbol g stands for the magnitude of the acceleration due to gravity, and therefore it is always a positive quantity.

Free-body force diagrams are very important!

Do not spend too much time on algebra!

1. (25 points) Consider three force vectors \vec{A} , \vec{B} , and \vec{C} . Vectors \vec{A} and \vec{B} have known magnitudes A and \vec{C} , well as and β shown in the figure. In addition, the components C_x and \vec{C}_y of vector \vec{C} are known. (a) What is the magnitude of vector \vec{C} ? (b) What is the total force $\vec{F} = \vec{A} + \vec{B} + \vec{C}$?

Result

2. (25 points) The acceleration of a block of mass m moving along a straight line is given by $a(t) = -c_1t^2$ where c_1 is a positive constant. At time t = 0, the object's position is x = 0 and at time $t = t_1$ its velocity is measured to be v_1 , where v_1 is a positive constant. (a) Find the object's position as a function of time. (b) Find the time t_r at which the object reverses its direction of motion.

3. (25 points) At time t = 0 a cannon ball located at the origin is fired with adjustable initial speed v_0 and angle θ_1 toward an airplane located at $x_1 = L$ and y = H with horizontal speed v_p toward the cannon. At time t = 0 the airplane begins to accelerate straight upward with magnitude $a = \beta t$ as shown in the figure. Write down a sufficient number of equations (**but do not solve!**) that in principle could be used to find the values of v_0 and θ_1 needed to hit the airplane.

Law
(annon ball

$$Q_{y} = -g^{+}$$
 $a_{x} = 0$ (+2)
 $V_{y0} = V_{0}S^{i}n\theta$ $V_{x0} = V_{0}CoS\theta$
 $V_{0} = 0$ (+2)
 V

$$p|_{ane} \quad a_{y} = \beta t \qquad a_{x} = 0$$

$$\frac{v_{y_{0}} = 0}{v_{s}} = H \qquad \frac{v_{x_{0}} = -v_{p}}{v_{o}} = L$$

$$\frac{v_{x_{0}} = -v_{p}}{v_{o}} = L + 2$$

$$\frac{v_{p}(t)}{2} = \frac{1}{2}\beta t^{2} + 2 \qquad x_{p}(t) = L - v_{p} t + 2$$

$$\frac{v_{p}(t)}{4} = H + \frac{1}{6}\beta t^{3} + 2$$
Result
$$\frac{v_{c}(t)}{12} = \frac{v_{p}(t)}{12} \qquad x_{c}(t) = x_{p}(t)$$

 m_2

4. (25 points) Three blocks with masses m_1 , m_2 , and m_3 are connected by an unstretchable string by a pulley as shown in the figure. The string and pulley have negligible mass. There is no friction between block m_2 and the ground, but there is friction between blocks m_1 and m_2 with known coefficient of friction μ . After being released from rest, block m_3 falls downward while blocks m_1 and m_2 move together to the right. (a) Draw a separate free-body diagram for each block. (b) Find the magnitude of the acceleration for the system. (c) Find the magnitude of the friction force acting on block m_1 . (d) If an additional external force F_0 pulls m_3 downward, what value of F_0 would cause block m_1 to begin sliding off of m_2 ?

