EXAM I Physics 206 FALL 2020

USEFUL EQUATIONS

If $f(x)=a x^{n}$, then

$$
\begin{aligned}
\frac{d f}{d x} & =n a x^{n-1} \\
\int f(x) d x & =\frac{a}{n+1} x^{n+1}+C
\end{aligned}
$$

For motion under constant acceleration a, the following formulas hold:

$$
\begin{gathered}
v(t)=a t+v(0) \\
x(t)=\frac{1}{2} a t^{2}+v(0) t+x(0) \\
v^{2}\left(t_{2}\right)-v^{2}\left(t_{1}\right)=2 a\left[x\left(t_{2}\right)-x\left(t_{1}\right)\right]
\end{gathered}
$$

Note: The symbol g stands for the magnitude of the acceleration due to gravity, and therefore it is always a positive quantity.

Free-body force diagrams are very important!
Do not spend too much time on algebra!

1. (25 points) Consider three force vectors \vec{A}, \vec{B}, and \vec{C}. Vectors \vec{A} and \vec{B} have known magnitudes A and B as well as angles α and β shown in the figure. In addition, the components C_{x} and C_{y} of vector \vec{C} are known. (a) What is the magnitude of vector \vec{C} ? (b) What is the total force $\vec{F}=\vec{A}+\vec{B}+\vec{C}$?

Law

Application

$\vec{C}=C_{x} \hat{i}_{x}+C_{y} \hat{i}_{y}$

$F_{x}=A \sin \alpha-B \cos \beta+C_{x}$

$$
\vec{F}=F_{x} \hat{c}_{x}+F_{y} \hat{c}_{y}
$$

Result
2. (25 points) The acceleration of a block of mass m moving along a straight line is given by $a(t)=-c_{1} t^{2}$ where c_{1} is a positive constant. At time $t=0$, the object's position is $x=0$ and at time $t=t_{1}$ its velocity is measured to be v_{1}, where v_{1} is a positive constant. (a) Find the object's position as a function of time. (b) Find the time t_{r} at which the object reverses its direction of motion.

Law

$$
t=t_{1}
$$

$$
v\left(t_{1}\right)=v_{1} \Rightarrow-\frac{1}{3} c_{1} t_{1}^{3}+c=v_{1}
$$

Result

$$
t^{3}=t_{1}^{3}+\frac{3}{c_{1}} v_{1}+1
$$

3. (25 points) At time $t=0$ a cannon ball located at the origin is fired with adjustable initial speed v_{0} and angle θ_{1} toward an airplane located at $x=L$ and $y=H$ with horizontal speed v_{p} toward the cannon. At time $t=0$ the airplane begins to accelerate straight upward with magnitude $a=\beta t$ as shown in the figure. Write down a sufficient number of equations (but do not solve!) that in principle could be used to find the values of v_{0} and θ_{1} needed to hit the airplane.

$$
\begin{array}{lll}
p l a n e & a_{y}=\beta t & a_{x}=0 \\
& \left.v_{y_{0}}=0+2\right) & \frac{v_{x 0}=-v_{p}+2}{y_{0}=H}
\end{array}
$$

4. (25 points) Three blocks with masses m_{1}, m_{2}, and m_{3} are connected by an unstretchable string by a pulley as shown in the figure. The string and pulley have negligible mass. There is no friction between block m_{2} and the ground, but there is friction between blocks m_{1} and m_{2} with known coefficient of friction μ. After being released from rest, block m_{3} falls downward while blocks m_{1} and m_{2} move together to the right. (a) Draw a separate free-body diagram for each block. (b) Find the magnitude of the acceleration for the system. (c) Find the magnitude of the friction force acting on block m_{1}. (d) If an additional external force F_{0} pulls m_{3} downward, what value of F_{0} would cause block m_{1} to begin sliding off of m_{2} ?

